From patchwork Mon Jul 17 10:33:32 2017 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Todor Tomov X-Patchwork-Id: 9844583 Return-Path: Received: from mail.wl.linuxfoundation.org (pdx-wl-mail.web.codeaurora.org [172.30.200.125]) by pdx-korg-patchwork.web.codeaurora.org (Postfix) with ESMTP id 65F4F60386 for ; Mon, 17 Jul 2017 10:42:29 +0000 (UTC) Received: from mail.wl.linuxfoundation.org (localhost [127.0.0.1]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id 5843E27F81 for ; Mon, 17 Jul 2017 10:42:29 +0000 (UTC) Received: by mail.wl.linuxfoundation.org (Postfix, from userid 486) id 4CD9B2842A; Mon, 17 Jul 2017 10:42:29 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on pdx-wl-mail.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-6.9 required=2.0 tests=BAYES_00,RCVD_IN_DNSWL_HI autolearn=unavailable version=3.3.1 Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id AAC8F27F81 for ; Mon, 17 Jul 2017 10:42:28 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S1751552AbdGQKk5 (ORCPT ); Mon, 17 Jul 2017 06:40:57 -0400 Received: from ns.mm-sol.com ([37.157.136.199]:36070 "EHLO extserv.mm-sol.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751338AbdGQKfC (ORCPT ); Mon, 17 Jul 2017 06:35:02 -0400 Received: from mms-0439.qualcomm.mm-sol.com (unknown [37.157.136.206]) by extserv.mm-sol.com (Postfix) with ESMTPSA id 27F50CBE4; Mon, 17 Jul 2017 13:34:58 +0300 (EEST) From: Todor Tomov To: mchehab@kernel.org, hans.verkuil@cisco.com, javier@osg.samsung.com, s.nawrocki@samsung.com, sakari.ailus@iki.fi, linux-media@vger.kernel.org, linux-kernel@vger.kernel.org, linux-arm-msm@vger.kernel.org Cc: Todor Tomov Subject: [PATCH v3 06/23] doc: media/v4l-drivers: Add Qualcomm Camera Subsystem driver document Date: Mon, 17 Jul 2017 13:33:32 +0300 Message-Id: <1500287629-23703-7-git-send-email-todor.tomov@linaro.org> X-Mailer: git-send-email 2.7.4 In-Reply-To: <1500287629-23703-1-git-send-email-todor.tomov@linaro.org> References: <1500287629-23703-1-git-send-email-todor.tomov@linaro.org> Sender: linux-media-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-media@vger.kernel.org X-Virus-Scanned: ClamAV using ClamSMTP Add a document to describe Qualcomm Camera Subsystem driver. Signed-off-by: Todor Tomov --- Documentation/media/v4l-drivers/qcom_camss.rst | 124 +++++++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 Documentation/media/v4l-drivers/qcom_camss.rst diff --git a/Documentation/media/v4l-drivers/qcom_camss.rst b/Documentation/media/v4l-drivers/qcom_camss.rst new file mode 100644 index 0000000..4707ea7 --- /dev/null +++ b/Documentation/media/v4l-drivers/qcom_camss.rst @@ -0,0 +1,124 @@ +.. include:: + +Qualcomm Camera Subsystem driver +================================ + +Introduction +------------ + +This file documents the Qualcomm Camera Subsystem driver located under +drivers/media/platform/qcom/camss-8x16. + +The current version of the driver supports the Camera Subsystem found on +Qualcomm MSM8916 and APQ8016 processors. + +The driver implements V4L2, Media controller and V4L2 subdev interfaces. +Camera sensor using V4L2 subdev interface in the kernel is supported. + +The driver is implemented using as a reference the Qualcomm Camera Subsystem +driver for Android as found in Code Aurora [#f1]_. + + +Qualcomm Camera Subsystem hardware +---------------------------------- + +The Camera Subsystem hardware found on 8x16 processors and supported by the +driver consists of: + +- 2 CSIPHY modules. They handle the Physical layer of the CSI2 receivers. + A separate camera sensor can be connected to each of the CSIPHY module; +- 2 CSID (CSI Decoder) modules. They handle the Protocol and Application layer + of the CSI2 receivers. A CSID can decode data stream from any of the CSIPHY. + Each CSID also contains a TG (Test Generator) block which can generate + artificial input data for test purposes; +- ISPIF (ISP Interface) module. Handles the routing of the data streams from + the CSIDs to the inputs of the VFE; +- VFE (Video Front End) module. Contains a pipeline of image processing hardware + blocks. The VFE has different input interfaces. The PIX input interface feeds + the input data to the image processing pipeline. Three RDI input interfaces + bypass the image processing pipeline. The VFE also contains the AXI bus + interface which writes the output data to memory. + + +Supported functionality +----------------------- + +The current version of the driver supports: + +- input from camera sensor via CSIPHY; +- generation of test input data by the TG in CSID; +- raw dump of the input data to memory. RDI interface of VFE is supported. + PIX interface (ISP processing, statistics engines, resize/crop, format + conversion) is not supported in the current version; +- concurrent and independent usage of two data inputs - could be camera sensors + and/or TG. + + +Driver Architecture and Design +------------------------------ + +The driver implements the V4L2 subdev interface. With the goal to model the +hardware links between the modules and to expose a clean, logical and usable +interface, the driver is split into V4L2 sub-devices as follows: + +- 2 CSIPHY sub-devices - each CSIPHY is represented by a single sub-device; +- 2 CSID sub-devices - each CSID is represented by a single sub-device; +- 2 ISPIF sub-devices - ISPIF is represented by a number of sub-devices equal + to the number of CSID sub-devices; +- 3 VFE sub-devices - VFE is represented by a number of sub-devices equal to + the number of RDI input interfaces. + +The considerations to split the driver in this particular way are as follows: + +- representing CSIPHY and CSID modules by a separate sub-device for each module + allows to model the hardware links between these modules; +- representing VFE by a separate sub-devices for each RDI input interface allows + to use the three RDI interfaces concurently and independently as this is + supported by the hardware; +- representing ISPIF by a number of sub-devices equal to the number of CSID + sub-devices allows to create linear media controller pipelines when using two + cameras simultaneously. This avoids branches in the pipelines which otherwise + will require a) userspace and b) media framework (e.g. power on/off + operations) to make assumptions about the data flow from a sink pad to a + source pad on a single media entity. + +Each VFE sub-device is linked to a separate video device node. + +The complete list of the media entities (V4L2 sub-devices and video device +nodes) is as follows: + +- msm_csiphy0 +- msm_csiphy1 +- msm_csid0 +- msm_csid1 +- msm_ispif0 +- msm_ispif1 +- msm_vfe0_rdi0 +- msm_vfe0_video0 +- msm_vfe0_rdi1 +- msm_vfe0_video1 +- msm_vfe0_rdi2 +- msm_vfe0_video2 + + +Implementation +-------------- + +Runtime configuration of the hardware (updating settings while streaming) is +not required to implement the currently supported functionality. The complete +configuration on each hardware module is applied on STREAMON ioctl based on +the current active media links, formats and controls set. + + +Documentation +------------- + +APQ8016 Specification: +https://developer.qualcomm.com/download/sd410/snapdragon-410-processor-device-specification.pdf +Referenced 2016-11-24. + + +References +---------- + +.. [#f1] https://source.codeaurora.org/quic/la/kernel/msm-3.10/