From patchwork Wed Jan 30 05:02:16 2019 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Dan Williams X-Patchwork-Id: 10787701 Return-Path: Received: from mail.wl.linuxfoundation.org (pdx-wl-mail.web.codeaurora.org [172.30.200.125]) by pdx-korg-patchwork-2.web.codeaurora.org (Postfix) with ESMTP id 910F9746 for ; Wed, 30 Jan 2019 05:14:59 +0000 (UTC) Received: from mail.wl.linuxfoundation.org (localhost [127.0.0.1]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id 7BC232D091 for ; Wed, 30 Jan 2019 05:14:59 +0000 (UTC) Received: by mail.wl.linuxfoundation.org (Postfix, from userid 486) id 6B7DC2D1C4; Wed, 30 Jan 2019 05:14:59 +0000 (UTC) X-Spam-Checker-Version: SpamAssassin 3.3.1 (2010-03-16) on pdx-wl-mail.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-2.9 required=2.0 tests=BAYES_00,MAILING_LIST_MULTI, RCVD_IN_DNSWL_NONE autolearn=ham version=3.3.1 Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.wl.linuxfoundation.org (Postfix) with ESMTP id CB80F2D091 for ; Wed, 30 Jan 2019 05:14:57 +0000 (UTC) Received: by kanga.kvack.org (Postfix) id A8B488E0003; Wed, 30 Jan 2019 00:14:56 -0500 (EST) Delivered-To: linux-mm-outgoing@kvack.org Received: by kanga.kvack.org (Postfix, from userid 40) id A136F8E0001; Wed, 30 Jan 2019 00:14:56 -0500 (EST) X-Original-To: int-list-linux-mm@kvack.org X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id 88DCB8E0003; Wed, 30 Jan 2019 00:14:56 -0500 (EST) X-Original-To: linux-mm@kvack.org X-Delivered-To: linux-mm@kvack.org Received: from mail-pl1-f200.google.com (mail-pl1-f200.google.com [209.85.214.200]) by kanga.kvack.org (Postfix) with ESMTP id 34C898E0001 for ; Wed, 30 Jan 2019 00:14:56 -0500 (EST) Received: by mail-pl1-f200.google.com with SMTP id x7so15951794pll.23 for ; Tue, 29 Jan 2019 21:14:56 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-original-authentication-results:x-gm-message-state:subject:from :to:cc:date:message-id:in-reply-to:references:user-agent :mime-version:content-transfer-encoding; bh=wjn/vlHuDA13uUl0fqMDVPdmEz9ITHKIC2CgpjTwMBc=; b=r4vYx0ieRttP3Ovydf0i7R5rJ7PLUL/z6wl3zt69nJwSf/pShcafahk4LpR/yMg+SW 9ruIv2gnw2GG3e0OlIGJ+DkMMg6IhhchesLmwZh6Qm7Tr1gtmf7ncyb4yxIyU1OQxMsQ R98QSRdLlvnZZ5h1zcTSl8slChDewppm9ibRv4iwRiNICyWQyVGHL1Kyiakt5gkBMkB3 PPjlNxtPbRDb80iqTKKTSdYLVrC9O1Lu4Rz0ERTn+b/Mv0OYPv8UxdoC3uddQ8N5uYDM BMDDDa/p9/nefsTviflMNI73gdhLlL63Rf4+0TWbavy5nasiiNoWN/XLSqRPGGZq1YEx prjQ== X-Original-Authentication-Results: mx.google.com; spf=pass (google.com: domain of dan.j.williams@intel.com designates 192.55.52.43 as permitted sender) smtp.mailfrom=dan.j.williams@intel.com; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=intel.com X-Gm-Message-State: AJcUukdpIe3VSsWQejJMk0rSO99WNrtMRIWw3FLrqPr9b/TSzB31WqeF 2lzgyK/1StmHs075ykn/E7+mstlQjYc6yjIvFs0f4ShOaWAbGpITVZtc1uj1dtyCEqHZ1MUziTu ntWJI23XY11066SRoDxd3e9R0G7vQdz0/3vmXJ5b0ADiHep+IGjRnMUzaDt1MUz46PQ== X-Received: by 2002:a17:902:930b:: with SMTP id bc11mr29605753plb.17.1548825295798; Tue, 29 Jan 2019 21:14:55 -0800 (PST) X-Google-Smtp-Source: ALg8bN7qPdR1DYxLQPD7a3DnOPYDS066Vx0N3QNOTFj+2BF9E42fw23ZbAwUYFcR1piQ73LupriN X-Received: by 2002:a17:902:930b:: with SMTP id bc11mr29605708plb.17.1548825294460; Tue, 29 Jan 2019 21:14:54 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1548825294; cv=none; d=google.com; s=arc-20160816; b=TNvwk8gq2YtVfST38+9dy96PP+SMHN0Dm/VJpc+Z/4kEx/niwYcKhVut63m21xG7P0 azN9eMOhoyT3ErDv/NfJ1x1znzm9A6gXtseKi5oqIhYmLGsVCy3VBsELK3gu7fHXc7Kk yD2t4PxIl7OaC8m/Ftg4gKqlBOMDYHV6fQB3KKtw7OHOEaxsONLCwvqnjNeAbTey3OgM uQUrlKBzUHPgFEHQOMaeYsDnRKzNtIHq0XIvEovBlXujQtzw1LrVLhKnAPSdHzXWvKMy 9XDUvcDpqFNW8VKSljlnT5kfDBXGQojJJk4Qf5JpaY5N7iZWbG+ONwSIkLMMhoxWtbXI nDNw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=content-transfer-encoding:mime-version:user-agent:references :in-reply-to:message-id:date:cc:to:from:subject; bh=wjn/vlHuDA13uUl0fqMDVPdmEz9ITHKIC2CgpjTwMBc=; b=tVLazfWuPkVWzpQBfRqK6GYGIQsNVx7NqZr2u2mMDt/6FZZ3ARILkZu1fXffbyODCs gW0zekp7eyg1Dt6MJ8LTaEvK10lWLrsTUEOwdCvy/ZC/ek3Kr+bijXL/fTOhQJkS8PRt eHjrftClg1QG8Ou4T7FBJvWVR8YuiSYpiniZjiJFkhLjx4tYjVVh1LrpQZC3sC2qCePQ dF9+CR1xWNO3JSyknZHLIEdKdCNpUT8rtFW2QQmRpMNsCJHoYJU4G2gtdXj6i9sljoQK 5YGNmIQMB8j8qsRXtwIjC+ZjUYaIU0Ro5Hq5ClsZbZS11lp/IHnImvS97un2IehUUt6B QjjA== ARC-Authentication-Results: i=1; mx.google.com; spf=pass (google.com: domain of dan.j.williams@intel.com designates 192.55.52.43 as permitted sender) smtp.mailfrom=dan.j.williams@intel.com; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=intel.com Received: from mga05.intel.com (mga05.intel.com. [192.55.52.43]) by mx.google.com with ESMTPS id r1si542582plb.330.2019.01.29.21.14.54 for (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256 bits=128/128); Tue, 29 Jan 2019 21:14:54 -0800 (PST) Received-SPF: pass (google.com: domain of dan.j.williams@intel.com designates 192.55.52.43 as permitted sender) client-ip=192.55.52.43; Authentication-Results: mx.google.com; spf=pass (google.com: domain of dan.j.williams@intel.com designates 192.55.52.43 as permitted sender) smtp.mailfrom=dan.j.williams@intel.com; dmarc=pass (p=NONE sp=NONE dis=NONE) header.from=intel.com X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from orsmga005.jf.intel.com ([10.7.209.41]) by fmsmga105.fm.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 29 Jan 2019 21:14:53 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.56,539,1539673200"; d="scan'208";a="295562559" Received: from dwillia2-desk3.jf.intel.com (HELO dwillia2-desk3.amr.corp.intel.com) ([10.54.39.16]) by orsmga005.jf.intel.com with ESMTP; 29 Jan 2019 21:14:53 -0800 Subject: [PATCH v9 1/3] mm: Shuffle initial free memory to improve memory-side-cache utilization From: Dan Williams To: akpm@linux-foundation.org Cc: Michal Hocko , Dave Hansen , Mike Rapoport , Kees Cook , linux-mm@kvack.org, linux-kernel@vger.kernel.org Date: Tue, 29 Jan 2019 21:02:16 -0800 Message-ID: <154882453604.1338686.15108059741397800728.stgit@dwillia2-desk3.amr.corp.intel.com> In-Reply-To: <154882453052.1338686.16411162273671426494.stgit@dwillia2-desk3.amr.corp.intel.com> References: <154882453052.1338686.16411162273671426494.stgit@dwillia2-desk3.amr.corp.intel.com> User-Agent: StGit/0.18-2-gc94f MIME-Version: 1.0 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: X-Virus-Scanned: ClamAV using ClamSMTP Randomization of the page allocator improves the average utilization of a direct-mapped memory-side-cache. Memory side caching is a platform capability that Linux has been previously exposed to in HPC (high-performance computing) environments on specialty platforms. In that instance it was a smaller pool of high-bandwidth-memory relative to higher-capacity / lower-bandwidth DRAM. Now, this capability is going to be found on general purpose server platforms where DRAM is a cache in front of higher latency persistent memory [1]. Robert offered an explanation of the state of the art of Linux interactions with memory-side-caches [2], and I copy it here: It's been a problem in the HPC space: http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/ A kernel module called zonesort is available to try to help: https://software.intel.com/en-us/articles/xeon-phi-software and this abandoned patch series proposed that for the kernel: https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com Dan's patch series doesn't attempt to ensure buffers won't conflict, but also reduces the chance that the buffers will. This will make performance more consistent, albeit slower than "optimal" (which is near impossible to attain in a general-purpose kernel). That's better than forcing users to deploy remedies like: "To eliminate this gradual degradation, we have added a Stream measurement to the Node Health Check that follows each job; nodes are rebooted whenever their measured memory bandwidth falls below 300 GB/s." A replacement for zonesort was merged upstream in commit cc9aec03e58f "x86/numa_emulation: Introduce uniform split capability". With this numa_emulation capability, memory can be split into cache sized ("near-memory" sized) numa nodes. A bind operation to such a node, and disabling workloads on other nodes, enables full cache performance. However, once the workload exceeds the cache size then cache conflicts are unavoidable. While HPC environments might be able to tolerate time-scheduling of cache sized workloads, for general purpose server platforms, the oversubscribed cache case will be the common case. The worst case scenario is that a server system owner benchmarks a workload at boot with an un-contended cache only to see that performance degrade over time, even below the average cache performance due to excessive conflicts. Randomization clips the peaks and fills in the valleys of cache utilization to yield steady average performance. Here are some performance impact details of the patches: 1/ An Intel internal synthetic memory bandwidth measurement tool, saw a 3X speedup in a contrived case that tries to force cache conflicts. The contrived cased used the numa_emulation capability to force an instance of the benchmark to be run in two of the near-memory sized numa nodes. If both instances were placed on the same emulated they would fit and cause zero conflicts. While on separate emulated nodes without randomization they underutilized the cache and conflicted unnecessarily due to the in-order allocation per node. 2/ A well known Java server application benchmark was run with a heap size that exceeded cache size by 3X. The cache conflict rate was 8% for the first run and degraded to 21% after page allocator aging. With randomization enabled the rate levelled out at 11%. 3/ A MongoDB workload did not observe measurable difference in cache-conflict rates, but the overall throughput dropped by 7% with randomization in one case. 4/ Mel Gorman ran his suite of performance workloads with randomization enabled on platforms without a memory-side-cache and saw a mix of some improvements and some losses [3]. While there is potentially significant improvement for applications that depend on low latency access across a wide working-set, the performance may be negligible to negative for other workloads. For this reason the shuffle capability defaults to off unless a direct-mapped memory-side-cache is detected. Even then, the page_alloc.shuffle=0 parameter can be specified to disable the randomization on those systems. Outside of memory-side-cache utilization concerns there is potentially security benefit from randomization. Some data exfiltration and return-oriented-programming attacks rely on the ability to infer the location of sensitive data objects. The kernel page allocator, especially early in system boot, has predictable first-in-first out behavior for physical pages. Pages are freed in physical address order when first onlined. Quoting Kees: "While we already have a base-address randomization (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and memory layouts would certainly be using the predictability of allocation ordering (i.e. for attacks where the base address isn't important: only the relative positions between allocated memory). This is common in lots of heap-style attacks. They try to gain control over ordering by spraying allocations, etc. I'd really like to see this because it gives us something similar to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator." While SLAB_FREELIST_RANDOM reduces the predictability of some local slab caches it leaves vast bulk of memory to be predictably in order allocated. However, it should be noted, the concrete security benefits are hard to quantify, and no known CVE is mitigated by this randomization. Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform a Fisher-Yates shuffle of the page allocator 'free_area' lists when they are initially populated with free memory at boot and at hotplug time. Do this based on either the presence of a page_alloc.shuffle=Y command line parameter, or autodetection of a memory-side-cache (to be added in a follow-on patch). The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10, 4MB this trades off randomization granularity for time spent shuffling. MAX_ORDER-1 was chosen to be minimally invasive to the page allocator while still showing memory-side cache behavior improvements, and the expectation that the security implications of finer granularity randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The performance impact of the shuffling appears to be in the noise compared to other memory initialization work. Also the bulk of the work is done in the background as a part of deferred_init_memmap(). This initial randomization can be undone over time so a follow-on patch is introduced to inject entropy on page free decisions. It is reasonable to ask if the page free entropy is sufficient, but it is not enough due to the in-order initial freeing of pages. At the start of that process putting page1 in front or behind page0 still keeps them close together, page2 is still near page1 and has a high chance of being adjacent. As more pages are added ordering diversity improves, but there is still high page locality for the low address pages and this leads to no significant impact to the cache conflict rate. [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/ [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM [3]: https://lkml.org/lkml/2018/10/12/309 Cc: Michal Hocko Cc: Dave Hansen Cc: Mike Rapoport Reviewed-by: Kees Cook Signed-off-by: Dan Williams Acked-by: Michal Hocko --- include/linux/list.h | 17 ++++ include/linux/mmzone.h | 4 + include/linux/shuffle.h | 45 +++++++++++ init/Kconfig | 23 ++++++ mm/Makefile | 7 ++ mm/memblock.c | 1 mm/memory_hotplug.c | 3 + mm/page_alloc.c | 6 +- mm/shuffle.c | 188 +++++++++++++++++++++++++++++++++++++++++++++++ 9 files changed, 292 insertions(+), 2 deletions(-) create mode 100644 include/linux/shuffle.h create mode 100644 mm/shuffle.c diff --git a/include/linux/list.h b/include/linux/list.h index edb7628e46ed..3dfb8953f241 100644 --- a/include/linux/list.h +++ b/include/linux/list.h @@ -150,6 +150,23 @@ static inline void list_replace_init(struct list_head *old, INIT_LIST_HEAD(old); } +/** + * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position + * @entry1: the location to place entry2 + * @entry2: the location to place entry1 + */ +static inline void list_swap(struct list_head *entry1, + struct list_head *entry2) +{ + struct list_head *pos = entry2->prev; + + list_del(entry2); + list_replace(entry1, entry2); + if (pos == entry1) + pos = entry2; + list_add(entry1, pos); +} + /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index cc4a507d7ca4..374e9d483382 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -1272,6 +1272,10 @@ void sparse_init(void); #else #define sparse_init() do {} while (0) #define sparse_index_init(_sec, _nid) do {} while (0) +static inline int pfn_present(unsigned long pfn) +{ + return pfn_valid(pfn); +} #endif /* CONFIG_SPARSEMEM */ /* diff --git a/include/linux/shuffle.h b/include/linux/shuffle.h new file mode 100644 index 000000000000..bed2d2901d13 --- /dev/null +++ b/include/linux/shuffle.h @@ -0,0 +1,45 @@ +// SPDX-License-Identifier: GPL-2.0 +// Copyright(c) 2018 Intel Corporation. All rights reserved. +#ifndef _MM_SHUFFLE_H +#define _MM_SHUFFLE_H +#include + +enum mm_shuffle_ctl { + SHUFFLE_ENABLE, + SHUFFLE_FORCE_DISABLE, +}; + +#define SHUFFLE_ORDER (MAX_ORDER-1) + +#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR +DECLARE_STATIC_KEY_FALSE(page_alloc_shuffle_key); +extern void page_alloc_shuffle(enum mm_shuffle_ctl ctl); +extern void __shuffle_free_memory(pg_data_t *pgdat); +static inline void shuffle_free_memory(pg_data_t *pgdat) +{ + if (!static_branch_unlikely(&page_alloc_shuffle_key)) + return; + __shuffle_free_memory(pgdat); +} + +extern void __shuffle_zone(struct zone *z); +static inline void shuffle_zone(struct zone *z) +{ + if (!static_branch_unlikely(&page_alloc_shuffle_key)) + return; + __shuffle_zone(z); +} +#else +static inline void shuffle_free_memory(pg_data_t *pgdat) +{ +} + +static inline void shuffle_zone(struct zone *z) +{ +} + +static inline void page_alloc_shuffle(enum mm_shuffle_ctl ctl) +{ +} +#endif +#endif /* _MM_SHUFFLE_H */ diff --git a/init/Kconfig b/init/Kconfig index d47cb77a220e..cfa199f3e9be 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -1714,6 +1714,29 @@ config SLAB_FREELIST_HARDENED sacrifies to harden the kernel slab allocator against common freelist exploit methods. +config SHUFFLE_PAGE_ALLOCATOR + bool "Page allocator randomization" + default SLAB_FREELIST_RANDOM && ACPI_NUMA + help + Randomization of the page allocator improves the average + utilization of a direct-mapped memory-side-cache. See section + 5.2.27 Heterogeneous Memory Attribute Table (HMAT) in the ACPI + 6.2a specification for an example of how a platform advertises + the presence of a memory-side-cache. There are also incidental + security benefits as it reduces the predictability of page + allocations to compliment SLAB_FREELIST_RANDOM, but the + default granularity of shuffling on 4MB (MAX_ORDER) pages is + selected based on cache utilization benefits. + + While the randomization improves cache utilization it may + negatively impact workloads on platforms without a cache. For + this reason, by default, the randomization is enabled only + after runtime detection of a direct-mapped memory-side-cache. + Otherwise, the randomization may be force enabled with the + 'page_alloc.shuffle' kernel command line parameter. + + Say Y if unsure. + config SLUB_CPU_PARTIAL default y depends on SLUB && SMP diff --git a/mm/Makefile b/mm/Makefile index d210cc9d6f80..ac5e5ba78874 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -33,7 +33,7 @@ mmu-$(CONFIG_MMU) += process_vm_access.o endif obj-y := filemap.o mempool.o oom_kill.o fadvise.o \ - maccess.o page_alloc.o page-writeback.o \ + maccess.o page-writeback.o \ readahead.o swap.o truncate.o vmscan.o shmem.o \ util.o mmzone.o vmstat.o backing-dev.o \ mm_init.o mmu_context.o percpu.o slab_common.o \ @@ -41,6 +41,11 @@ obj-y := filemap.o mempool.o oom_kill.o fadvise.o \ interval_tree.o list_lru.o workingset.o \ debug.o $(mmu-y) +# Give 'page_alloc' its own module-parameter namespace +page-alloc-y := page_alloc.o +page-alloc-$(CONFIG_SHUFFLE_PAGE_ALLOCATOR) += shuffle.o + +obj-y += page-alloc.o obj-y += init-mm.o obj-y += memblock.o diff --git a/mm/memblock.c b/mm/memblock.c index 022d4cbb3618..c0cfbfae4a03 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -17,6 +17,7 @@ #include #include #include +#include #include #include #include diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index b9a667d36c55..07732be3065e 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -23,6 +23,7 @@ #include #include #include +#include #include #include #include @@ -895,6 +896,8 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ zone->zone_pgdat->node_present_pages += onlined_pages; pgdat_resize_unlock(zone->zone_pgdat, &flags); + shuffle_zone(zone); + if (onlined_pages) { node_states_set_node(nid, &arg); if (need_zonelists_rebuild) diff --git a/mm/page_alloc.c b/mm/page_alloc.c index cde5dac6229a..6208ff744b07 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -61,6 +61,7 @@ #include #include #include +#include #include #include #include @@ -1752,9 +1753,9 @@ _deferred_grow_zone(struct zone *zone, unsigned int order) void __init page_alloc_init_late(void) { struct zone *zone; + int nid; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT - int nid; /* There will be num_node_state(N_MEMORY) threads */ atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); @@ -1779,6 +1780,9 @@ void __init page_alloc_init_late(void) memblock_discard(); #endif + for_each_node_state(nid, N_MEMORY) + shuffle_free_memory(NODE_DATA(nid)); + for_each_populated_zone(zone) set_zone_contiguous(zone); } diff --git a/mm/shuffle.c b/mm/shuffle.c new file mode 100644 index 000000000000..db517cdbaebe --- /dev/null +++ b/mm/shuffle.c @@ -0,0 +1,188 @@ +// SPDX-License-Identifier: GPL-2.0 +// Copyright(c) 2018 Intel Corporation. All rights reserved. + +#include +#include +#include +#include +#include +#include +#include "internal.h" + +DEFINE_STATIC_KEY_FALSE(page_alloc_shuffle_key); +static unsigned long shuffle_state __ro_after_init; + +/* + * Depending on the architecture, module parameter parsing may run + * before, or after the cache detection. SHUFFLE_FORCE_DISABLE prevents, + * or reverts the enabling of the shuffle implementation. SHUFFLE_ENABLE + * attempts to turn on the implementation, but aborts if it finds + * SHUFFLE_FORCE_DISABLE already set. + */ +void page_alloc_shuffle(enum mm_shuffle_ctl ctl) +{ + if (ctl == SHUFFLE_FORCE_DISABLE) + set_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state); + + if (test_bit(SHUFFLE_FORCE_DISABLE, &shuffle_state)) { + if (test_and_clear_bit(SHUFFLE_ENABLE, &shuffle_state)) + static_branch_disable(&page_alloc_shuffle_key); + } else if (ctl == SHUFFLE_ENABLE + && !test_and_set_bit(SHUFFLE_ENABLE, &shuffle_state)) + static_branch_enable(&page_alloc_shuffle_key); +} + +static bool shuffle_param; +extern int shuffle_show(char *buffer, const struct kernel_param *kp) +{ + return sprintf(buffer, "%c\n", test_bit(SHUFFLE_ENABLE, &shuffle_state) + ? 'Y' : 'N'); +} +static int shuffle_store(const char *val, const struct kernel_param *kp) +{ + int rc = param_set_bool(val, kp); + + if (rc < 0) + return rc; + if (shuffle_param) + page_alloc_shuffle(SHUFFLE_ENABLE); + else + page_alloc_shuffle(SHUFFLE_FORCE_DISABLE); + return 0; +} +module_param_call(shuffle, shuffle_store, shuffle_show, &shuffle_param, 0400); + +/* + * For two pages to be swapped in the shuffle, they must be free (on a + * 'free_area' lru), have the same order, and have the same migratetype. + */ +static struct page * __meminit shuffle_valid_page(unsigned long pfn, int order) +{ + struct page *page; + + /* + * Given we're dealing with randomly selected pfns in a zone we + * need to ask questions like... + */ + + /* ...is the pfn even in the memmap? */ + if (!pfn_valid_within(pfn)) + return NULL; + + /* ...is the pfn in a present section or a hole? */ + if (!pfn_present(pfn)) + return NULL; + + /* ...is the page free and currently on a free_area list? */ + page = pfn_to_page(pfn); + if (!PageBuddy(page)) + return NULL; + + /* + * ...is the page on the same list as the page we will + * shuffle it with? + */ + if (page_order(page) != order) + return NULL; + + return page; +} + +/* + * Fisher-Yates shuffle the freelist which prescribes iterating through + * an array, pfns in this case, and randomly swapping each entry with + * another in the span, end_pfn - start_pfn. + * + * To keep the implementation simple it does not attempt to correct for + * sources of bias in the distribution, like modulo bias or + * pseudo-random number generator bias. I.e. the expectation is that + * this shuffling raises the bar for attacks that exploit the + * predictability of page allocations, but need not be a perfect + * shuffle. + */ +#define SHUFFLE_RETRY 10 +void __meminit __shuffle_zone(struct zone *z) +{ + unsigned long i, flags; + unsigned long start_pfn = z->zone_start_pfn; + unsigned long end_pfn = zone_end_pfn(z); + const int order = SHUFFLE_ORDER; + const int order_pages = 1 << order; + + spin_lock_irqsave(&z->lock, flags); + start_pfn = ALIGN(start_pfn, order_pages); + for (i = start_pfn; i < end_pfn; i += order_pages) { + unsigned long j; + int migratetype, retry; + struct page *page_i, *page_j; + + /* + * We expect page_i, in the sub-range of a zone being + * added (@start_pfn to @end_pfn), to more likely be + * valid compared to page_j randomly selected in the + * span @zone_start_pfn to @spanned_pages. + */ + page_i = shuffle_valid_page(i, order); + if (!page_i) + continue; + + for (retry = 0; retry < SHUFFLE_RETRY; retry++) { + /* + * Pick a random order aligned page from the + * start of the zone. Use the *whole* zone here + * so that if it is freed in tiny pieces that we + * randomize in the whole zone, not just within + * those fragments. + * + * Since page_j comes from a potentially sparse + * address range we want to try a bit harder to + * find a shuffle point for page_i. + */ + j = z->zone_start_pfn + + ALIGN_DOWN(get_random_long() % z->spanned_pages, + order_pages); + page_j = shuffle_valid_page(j, order); + if (page_j && page_j != page_i) + break; + } + if (retry >= SHUFFLE_RETRY) { + pr_debug("%s: failed to swap %#lx\n", __func__, i); + continue; + } + + /* + * Each migratetype corresponds to its own list, make + * sure the types match otherwise we're moving pages to + * lists where they do not belong. + */ + migratetype = get_pageblock_migratetype(page_i); + if (get_pageblock_migratetype(page_j) != migratetype) { + pr_debug("%s: migratetype mismatch %#lx\n", __func__, i); + continue; + } + + list_swap(&page_i->lru, &page_j->lru); + + pr_debug("%s: swap: %#lx -> %#lx\n", __func__, i, j); + + /* take it easy on the zone lock */ + if ((i % (100 * order_pages)) == 0) { + spin_unlock_irqrestore(&z->lock, flags); + cond_resched(); + spin_lock_irqsave(&z->lock, flags); + } + } + spin_unlock_irqrestore(&z->lock, flags); +} + +/** + * shuffle_free_memory - reduce the predictability of the page allocator + * @pgdat: node page data + */ +void __meminit __shuffle_free_memory(pg_data_t *pgdat) +{ + struct zone *z; + + for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) + shuffle_zone(z); +}