@@ -562,7 +562,7 @@ void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
EXPORT_SYMBOL(mark_buffer_dirty_inode);
/*
- * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
+ * Mark the page dirty, and set it dirty in the page cache, and mark the inode
* dirty.
*
* If warn is true, then emit a warning if the page is not uptodate and has
@@ -579,8 +579,8 @@ void __set_page_dirty(struct page *page, struct address_space *mapping,
if (page->mapping) { /* Race with truncate? */
WARN_ON_ONCE(warn && !PageUptodate(page));
account_page_dirtied(page, mapping);
- radix_tree_tag_set(&mapping->i_pages,
- page_index(page), PAGECACHE_TAG_DIRTY);
+ __xa_set_tag(&mapping->i_pages, page_index(page),
+ PAGECACHE_TAG_DIRTY);
}
xa_unlock_irqrestore(&mapping->i_pages, flags);
}
@@ -1043,7 +1043,7 @@ __getblk_slow(struct block_device *bdev, sector_t block,
* The relationship between dirty buffers and dirty pages:
*
* Whenever a page has any dirty buffers, the page's dirty bit is set, and
- * the page is tagged dirty in its radix tree.
+ * the page is tagged dirty in the page cache.
*
* At all times, the dirtiness of the buffers represents the dirtiness of
* subsections of the page. If the page has buffers, the page dirty bit is
@@ -1066,9 +1066,9 @@ __getblk_slow(struct block_device *bdev, sector_t block,
* mark_buffer_dirty - mark a buffer_head as needing writeout
* @bh: the buffer_head to mark dirty
*
- * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
- * backing page dirty, then tag the page as dirty in its address_space's radix
- * tree and then attach the address_space's inode to its superblock's dirty
+ * mark_buffer_dirty() will set the dirty bit against the buffer, then set
+ * its backing page dirty, then tag the page as dirty in the page cache
+ * and then attach the address_space's inode to its superblock's dirty
* inode list.
*
* mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,