From patchwork Mon Apr 6 23:16:04 2020 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Kees Cook X-Patchwork-Id: 11476827 Return-Path: Received: from mail.kernel.org (pdx-korg-mail-1.web.codeaurora.org [172.30.200.123]) by pdx-korg-patchwork-2.web.codeaurora.org (Postfix) with ESMTP id DB5501744 for ; Mon, 6 Apr 2020 23:16:21 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 8E80121556 for ; Mon, 6 Apr 2020 23:16:21 +0000 (UTC) Authentication-Results: mail.kernel.org; dkim=fail reason="signature verification failed" (1024-bit key) header.d=chromium.org header.i=@chromium.org header.b="jFwMyhOo" DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 8E80121556 Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=chromium.org Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=owner-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix) id 6EB7B8E000F; Mon, 6 Apr 2020 19:16:15 -0400 (EDT) Delivered-To: linux-mm-outgoing@kvack.org Received: by kanga.kvack.org (Postfix, from userid 40) id 6C0E28E0001; Mon, 6 Apr 2020 19:16:15 -0400 (EDT) X-Original-To: int-list-linux-mm@kvack.org X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id 5B06B8E000F; Mon, 6 Apr 2020 19:16:15 -0400 (EDT) X-Original-To: linux-mm@kvack.org X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0171.hostedemail.com [216.40.44.171]) by kanga.kvack.org (Postfix) with ESMTP id 42B908E0001 for ; Mon, 6 Apr 2020 19:16:15 -0400 (EDT) Received: from smtpin08.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay03.hostedemail.com (Postfix) with ESMTP id F085F8016B1F for ; Mon, 6 Apr 2020 23:16:14 +0000 (UTC) X-FDA: 76678990668.08.walk87_8dd1caaf03153 X-Spam-Summary: 50,0,0,0fb5e19f07305ad4,d41d8cd98f00b204,keescook@chromium.org,,RULES_HIT:4:41:334:355:368:369:379:541:800:960:967:968:973:979:982:988:989:1260:1311:1314:1345:1359:1437:1515:1605:1730:1747:1777:1792:1801:1969:2194:2195:2197:2198:2199:2200:2201:2202:2393:2525:2553:2568:2631:2638:2682:2685:2693:2731:2859:2894:2897:2902:2912:2933:2937:2939:2942:2945:2947:2951:2954:3022:3138:3139:3140:3141:3142:3653:3865:3866:3867:3868:3870:3871:3872:3874:3934:3936:3938:3941:3944:3947:3950:3953:3956:3959:4250:4321:4383:4605:5007:6117:6119:6261:6653:6742:6755:7903:8603:8660:8985:9025:9040:9121:9389:10004:11026:11232:11473:11658:11914:12043:12219:12291:12295:12296:12297:12438:12517:12519:12555:12679:12683:12740:12895:12903:12986:13141:13148:13149:13160:13161:13229:13230:13845:13846:13869:13894:13972:14093:14096:14394:14877:21080:21212:21221:21324:21347:21444:21450:21451:21611:21627:21740:21749:21788:21811:21939:21987:21990:30003:30005:30012:30025:30029:30045:30054:30064:30070:30074: 30079:30 X-HE-Tag: walk87_8dd1caaf03153 X-Filterd-Recvd-Size: 15970 Received: from mail-pl1-f196.google.com (mail-pl1-f196.google.com [209.85.214.196]) by imf29.hostedemail.com (Postfix) with ESMTP for ; Mon, 6 Apr 2020 23:16:14 +0000 (UTC) Received: by mail-pl1-f196.google.com with SMTP id d24so481391pll.8 for ; Mon, 06 Apr 2020 16:16:14 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=chromium.org; s=google; h=from:to:cc:subject:date:message-id:in-reply-to:references :mime-version:content-transfer-encoding; bh=gI5IFR42YfojEVReCokIL0PkImea/rfn/M9y/tkHY3U=; b=jFwMyhOoOhIidIm2MRbLuwmjjsTl0duo2bGeUwCoUDkarOJ9jJsT13+uJWwEt5weB7 uBqhEnMU5ufwmm6gsM6owJ74S1MB1iiKDZl4BywfhE04wcjYNTqGdNXMKBkwSCibT2Q2 Ppmgzkw/R5mxGJHXnmX3KKpxpDz0ThfqUGMAE= X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:from:to:cc:subject:date:message-id:in-reply-to :references:mime-version:content-transfer-encoding; bh=gI5IFR42YfojEVReCokIL0PkImea/rfn/M9y/tkHY3U=; b=HjjfIWitbTEPnDS5q21+fbtpxP1NgxosS8JPJjJQADPuFVRnUZ9Vcyrpy9bFFWzdlR sKjXOhAscQUAh6AzwEaLnkcODEYjr8qfJpGq6hZwVICEtlACTFUGdpz3CcJCMcnisDFY 0boqBRkPjn9jSuJuXt6jmg77SZ+omJvmQl5DtEYR0ixuc+BRHqd0jP9ArmgHMC4w9ax0 xCfEPGaOl+3mDB+tsJr1dSvm3BuGRCnZTYktX85ZcF2A0eYPQyLHKTYqjitVjlmNg/8J GzvIgkItP7MVyXpyDZJpJDVhugTjScALUwGzhwAYIJBlyDkbTtI9kVAuYp0vCVAbC4Ih Ydjw== X-Gm-Message-State: AGi0PuajPj53Nw9SV9Ptv2v1QukkVNa0Ne8nbggm9ejseJMQcU6GVHBP eZVnxGpHpQwovXU0XtT9ywecrQ== X-Google-Smtp-Source: APiQypLr0HSVNkvDvGSyptY8A0rxNb1GV4o+xBzFEZBbbppMCeIsWmsRLIX7ABdxlixe031V5gjLuA== X-Received: by 2002:a17:902:8c94:: with SMTP id t20mr21940332plo.336.1586214973377; Mon, 06 Apr 2020 16:16:13 -0700 (PDT) Received: from www.outflux.net (smtp.outflux.net. [198.145.64.163]) by smtp.gmail.com with ESMTPSA id t27sm3727621pgn.53.2020.04.06.16.16.10 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Mon, 06 Apr 2020 16:16:10 -0700 (PDT) From: Kees Cook To: Thomas Gleixner Cc: Kees Cook , Elena Reshetova , x86@kernel.org, Andy Lutomirski , Peter Zijlstra , Catalin Marinas , Will Deacon , Mark Rutland , Alexander Potapenko , Ard Biesheuvel , Jann Horn , kernel-hardening@lists.openwall.com, linux-arm-kernel@lists.infradead.org, linux-mm@kvack.org, linux-kernel@vger.kernel.org Subject: [PATCH v3 3/5] stack: Optionally randomize kernel stack offset each syscall Date: Mon, 6 Apr 2020 16:16:04 -0700 Message-Id: <20200406231606.37619-4-keescook@chromium.org> X-Mailer: git-send-email 2.20.1 In-Reply-To: <20200406231606.37619-1-keescook@chromium.org> References: <20200406231606.37619-1-keescook@chromium.org> MIME-Version: 1.0 X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: This provides the ability for architectures to enable kernel stack base address offset randomization. This feature is controlled by the boot param "randomize_kstack_offset=on/off", with its default value set by CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT. This feature is based on the original idea from the last public release of PaX's RANDKSTACK feature: https://pax.grsecurity.net/docs/randkstack.txt All the credit for the original idea goes to the PaX team. Note that the design and implementation of this upstream randomize_kstack_offset feature differs greatly from the RANDKSTACK feature (see below). Reasoning for the feature: This feature aims to make harder the various stack-based attacks that rely on deterministic stack structure. We have had many such attacks in past (just to name few): https://jon.oberheide.org/files/infiltrate12-thestackisback.pdf https://jon.oberheide.org/files/stackjacking-infiltrate11.pdf https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html As Linux kernel stack protections have been constantly improving (vmap-based stack allocation with guard pages, removal of thread_info, STACKLEAK), attackers have had to find new ways for their exploits to work. They have done so, continuing to rely on the kernel's stack determinism, in situations where VMAP_STACK and THREAD_INFO_IN_TASK_STRUCT were not relevant. For example, the following recent attacks would have been hampered if the stack offset was non-deterministic between syscalls: https://repositorio-aberto.up.pt/bitstream/10216/125357/2/374717.pdf (page 70: targeting the pt_regs copy with linear stack overflow) https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html (leaked stack address from one syscall as a target during next syscall) The main idea is that since the stack offset is randomized on each system call, it is harder for an attack to reliably land in any particular place on the thread stack, even with address exposures, as the stack base will change on the next syscall. Also, since randomization is performed after placing pt_regs, the ptrace-based approach[1] to discover the randomized offset during a long-running syscall should not be possible. Design description: During most of the kernel's execution, it runs on the "thread stack", which is pretty deterministic in its structure: it is fixed in size, and on every entry from userspace to kernel on a syscall the thread stack starts construction from an address fetched from the per-cpu cpu_current_top_of_stack variable. The first element to be pushed to the thread stack is the pt_regs struct that stores all required CPU registers and syscall parameters. Finally the specific syscall function is called, with the stack being used as the kernel executes the resulting request. The goal of randomize_kstack_offset feature is to add a random offset after the pt_regs has been pushed to the stack and before the rest of the thread stack is used during the syscall processing, and to change it every time a process issues a syscall. The source of randomness is currently architecture-defined (but x86 is using the low byte of rdtsc()). Future improvements for different entropy sources is possible, but out of scope for this patch. As suggested by Andy Lutomirski, the offset is added using alloca() and an empty asm() statement with an output constraint, since it avoid changes to assembly syscall entry code, to the unwinder, and provides correct stack alignment as defined by the compiler. In order to make this available by default with zero performance impact for those that don't want it, it is boot-time selectable with static branches. This way, if the overhead is not wanted, it can just be left turned off with no performance impact. The generated assembly for x86_64 with GCC looks like this: ... ffffffff81003977: 65 8b 05 02 ea 00 7f mov %gs:0x7f00ea02(%rip),%eax # 12380 ffffffff8100397e: 25 ff 03 00 00 and $0x3ff,%eax ffffffff81003983: 48 83 c0 0f add $0xf,%rax ffffffff81003987: 25 f8 07 00 00 and $0x7f8,%eax ffffffff8100398c: 48 29 c4 sub %rax,%rsp ffffffff8100398f: 48 8d 44 24 0f lea 0xf(%rsp),%rax ffffffff81003994: 48 83 e0 f0 and $0xfffffffffffffff0,%rax ... As a result of the above stack alignment, this patch introduces about 5 bits of randomness after pt_regs is spilled to the thread stack on x86_64, and 6 bits on x86_32 (since its has 1 fewer bit required for stack alignment). The amount of entropy could be adjusted based on how much of the stack space we wish to trade for security. My measure of syscall performance overhead (on x86_64): lmbench: /usr/lib/lmbench/bin/x86_64-linux-gnu/lat_syscall -N 10000 null randomize_kstack_offset=y Simple syscall: 0.7082 microseconds randomize_kstack_offset=n Simple syscall: 0.7016 microseconds So, roughly 0.9% overhead growth for a no-op syscall, which is very manageable. And for people that don't want this, it's off by default. There are two gotchas with using the alloca() trick. First, compilers that have Stack Clash protection (-fstack-clash-protection) enabled by default (e.g. Ubuntu[3]) add pagesize stack probes to any dynamic stack allocations. While the randomization offset is always less than a page, the resulting assembly would still contain (unreachable!) probing routines, bloating the resulting assembly. To avoid this, -fno-stack-clash-protection is unconditionally added to the kernel Makefile since this is the only dynamic stack allocation in the kernel (now that VLAs have been removed) and it is provably safe from Stack Clash style attacks. The second gotcha with alloca() is a negative interaction with -fstack-protector-strong, in that it see the alloca() as an array allocation, which triggers the unconditional addition of the stack canary function pre/post-amble which slows down syscalls regardless of the static branch. In order to avoid adding this unneeded check and its associated performance impact, architectures need to downgrade uses of -fstack-protector-strong to -fstack-protector (which only triggers for char arrays) in the compilation units that use the add_random_kstack() macro and to audit the resulting stack mitigation coverage (to make sure no desired coverage disappears). This is done in the next patches for x86 and arm64. There is, unfortunately, no attribute that can be used to disable stack protector for specific functions. Comparison to PaX RANDKSTACK feature: The RANDKSTACK feature randomizes the location of the stack start (cpu_current_top_of_stack), i.e. including the location of pt_regs structure itself on the stack. Initially this patch followed the same approach, but during the recent discussions[2], it has been determined to be of a little value since, if ptrace functionality is available for an attacker, they can use PTRACE_PEEKUSR/PTRACE_POKEUSR to read/write different offsets in the pt_regs struct, observe the cache behavior of the pt_regs accesses, and figure out the random stack offset. Another difference is that the random offset is stored in a per-cpu variable, rather than having it be per-thread. As a result, these implementations differ a fair bit in their implementation details and results, though obviously the intent is similar. [1] https://lore.kernel.org/kernel-hardening/2236FBA76BA1254E88B949DDB74E612BA4BC57C1@IRSMSX102.ger.corp.intel.com/ [2] https://lore.kernel.org/kernel-hardening/20190329081358.30497-1-elena.reshetova@intel.com/ [3] https://lists.ubuntu.com/archives/ubuntu-devel/2019-June/040741.html Co-developed-by: Elena Reshetova Signed-off-by: Elena Reshetova Link: https://lore.kernel.org/r/20190415060918.3766-1-elena.reshetova@intel.com Signed-off-by: Kees Cook --- Makefile | 4 ++++ arch/Kconfig | 23 ++++++++++++++++++ include/linux/randomize_kstack.h | 40 ++++++++++++++++++++++++++++++++ init/main.c | 23 ++++++++++++++++++ 4 files changed, 90 insertions(+) create mode 100644 include/linux/randomize_kstack.h diff --git a/Makefile b/Makefile index 4d0711f54047..1d4a8b9a6b02 100644 --- a/Makefile +++ b/Makefile @@ -779,6 +779,10 @@ ifdef CONFIG_INIT_STACK_ALL KBUILD_CFLAGS += -ftrivial-auto-var-init=pattern endif +# While VLAs have been removed, GCC produces unreachable stack probes +# for the randomize_kstack_offset feature. Disable it for all compilers. +KBUILD_CFLAGS += $(call cc-option,-fno-stack-clash-protection,) + DEBUG_CFLAGS := $(call cc-option, -fno-var-tracking-assignments) ifdef CONFIG_DEBUG_INFO diff --git a/arch/Kconfig b/arch/Kconfig index 17fe351cdde0..701c7d842714 100644 --- a/arch/Kconfig +++ b/arch/Kconfig @@ -854,6 +854,29 @@ config VMAP_STACK virtual mappings with real shadow memory, and KASAN_VMALLOC must be enabled. +config HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET + def_bool n + help + An arch should select this symbol if it can support kernel stack + offset randomization with calls to add_random_kstack_offset() + during syscall entry and choose_random_kstack_offset() during + syscall exit. Downgrading of -fstack-protector-strong to + -fstack-protector should also be applied to the entry code and + closely examined, as the artificial stack bump looks like an array + to the compiler, so it will attempt to add canary checks regardless + of the static branch state. + +config RANDOMIZE_KSTACK_OFFSET_DEFAULT + bool "Randomize kernel stack offset on syscall entry" + depends on HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET + help + The kernel stack offset can be randomized (after pt_regs) by + roughly 5 bits of entropy, frustrating memory corruption + attacks that depend on stack address determinism or + cross-syscall address exposures. This feature is controlled + by kernel boot param "randomize_kstack_offset=on/off", and this + config chooses the default boot state. + config ARCH_OPTIONAL_KERNEL_RWX def_bool n diff --git a/include/linux/randomize_kstack.h b/include/linux/randomize_kstack.h new file mode 100644 index 000000000000..1df0dc52cadc --- /dev/null +++ b/include/linux/randomize_kstack.h @@ -0,0 +1,40 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +#ifndef _LINUX_RANDOMIZE_KSTACK_H +#define _LINUX_RANDOMIZE_KSTACK_H + +#include +#include +#include + +DECLARE_STATIC_KEY_MAYBE(CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT, + randomize_kstack_offset); +DECLARE_PER_CPU(u32, kstack_offset); + +/* + * Do not use this anywhere else in the kernel. This is used here because + * it provides an arch-agnostic way to grow the stack with correct + * alignment. Also, since this use is being explicitly masked to a max of + * 10 bits, stack-clash style attacks are unlikely. For more details see + * "VLAs" in Documentation/process/deprecated.rst + */ +void *__builtin_alloca(size_t size); + +#define add_random_kstack_offset() do { \ + if (static_branch_maybe(CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT, \ + &randomize_kstack_offset)) { \ + u32 offset = this_cpu_read(kstack_offset); \ + u8 *ptr = __builtin_alloca(offset & 0x3FF); \ + asm volatile("" : "=m"(*ptr)); \ + } \ +} while (0) + +#define choose_random_kstack_offset(rand) do { \ + if (static_branch_maybe(CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT, \ + &randomize_kstack_offset)) { \ + u32 offset = this_cpu_read(kstack_offset); \ + offset ^= (rand); \ + this_cpu_write(kstack_offset, offset); \ + } \ +} while (0) + +#endif diff --git a/init/main.c b/init/main.c index ee4947af823f..78fe3aea00b0 100644 --- a/init/main.c +++ b/init/main.c @@ -777,6 +777,29 @@ static void __init mm_init(void) pti_init(); } +#ifdef CONFIG_HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET +DEFINE_STATIC_KEY_MAYBE_RO(CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT, + randomize_kstack_offset); +DEFINE_PER_CPU(u32, kstack_offset); + +static int __init early_randomize_kstack_offset(char *buf) +{ + int ret; + bool bool_result; + + ret = kstrtobool(buf, &bool_result); + if (ret) + return ret; + + if (bool_result) + static_branch_enable(&randomize_kstack_offset); + else + static_branch_disable(&randomize_kstack_offset); + return 0; +} +early_param("randomize_kstack_offset", early_randomize_kstack_offset); +#endif + void __init __weak arch_call_rest_init(void) { rest_init();