@@ -595,6 +595,7 @@ struct huge_bootmem_page {
struct hstate *hstate;
};
+int isolate_or_dissolve_huge_page(struct page *page);
struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve);
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
@@ -877,6 +878,11 @@ static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
#else /* CONFIG_HUGETLB_PAGE */
struct hstate {};
+static inline int isolate_or_dissolve_huge_page(struct page *page)
+{
+ return -ENOMEM;
+}
+
static inline struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr,
int avoid_reserve)
@@ -788,7 +788,7 @@ static bool too_many_isolated(pg_data_t *pgdat)
* Isolate all pages that can be migrated from the range specified by
* [low_pfn, end_pfn). The range is expected to be within same pageblock.
* Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
- * or 0.
+ * -ENOMEM in case we could not allocate a page, or 0.
* cc->migrate_pfn will contain the next pfn to scan.
*
* The pages are isolated on cc->migratepages list (not required to be empty),
@@ -906,6 +906,29 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
valid_page = page;
}
+ if (PageHuge(page) && cc->alloc_contig) {
+ ret = isolate_or_dissolve_huge_page(page);
+
+ /*
+ * Fail isolation in case isolate_or_dissolve_huge_page()
+ * reports an error. In case of -ENOMEM, abort right away.
+ */
+ if (ret < 0) {
+ /* Do not report -EBUSY down the chain */
+ if (ret == -EBUSY)
+ ret = 0;
+ low_pfn += (1UL << compound_order(page)) - 1;
+ goto isolate_fail;
+ }
+
+ /*
+ * Ok, the hugepage was dissolved. Now these pages are
+ * Buddy and cannot be re-allocated because they are
+ * isolated. Fall-through as the check below handles
+ * Buddy pages.
+ */
+ }
+
/*
* Skip if free. We read page order here without zone lock
* which is generally unsafe, but the race window is small and
@@ -1065,7 +1088,7 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
put_page(page);
isolate_fail:
- if (!skip_on_failure)
+ if (!skip_on_failure && ret != -ENOMEM)
continue;
/*
@@ -1091,6 +1114,9 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
*/
next_skip_pfn += 1UL << cc->order;
}
+
+ if (ret == -ENOMEM)
+ break;
}
/*
@@ -1143,7 +1169,8 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
* @start_pfn: The first PFN to start isolating.
* @end_pfn: The one-past-last PFN.
*
- * Returns -EAGAIN when contented, -EINTR in case of a signal pending or 0.
+ * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
+ * in case we could not allocate a page, or 0.
*/
int
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
@@ -2266,6 +2266,122 @@ static void restore_reserve_on_error(struct hstate *h,
}
}
+/*
+ * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
+ * @h: struct hstate old page belongs to
+ * @old_page: Old page to dissolve
+ * Returns 0 on success, otherwise negated error.
+ */
+static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page)
+{
+ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ int nid = page_to_nid(old_page);
+ struct page *new_page;
+ int ret = 0;
+
+ /*
+ * Before dissolving the page, we need to allocate a new one for the
+ * pool to remain stable. Using alloc_buddy_huge_page() allows us to
+ * not having to deal with prep_new_huge_page() and avoids dealing of any
+ * counters. This simplifies and let us do the whole thing under the
+ * lock.
+ */
+ new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
+ if (!new_page)
+ return -ENOMEM;
+
+retry:
+ spin_lock_irq(&hugetlb_lock);
+ if (!PageHuge(old_page)) {
+ /*
+ * Freed from under us. Drop new_page too.
+ */
+ goto free_new;
+ } else if (page_count(old_page)) {
+ /*
+ * Someone has grabbed the page, fail for now.
+ */
+ ret = -EBUSY;
+ goto free_new;
+ } else if (!HPageFreed(old_page)) {
+ /*
+ * Page's refcount is 0 but it has not been enqueued in the
+ * freelist yet. Race window is small, so we can succeed here if
+ * we retry.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ cond_resched();
+ goto retry;
+ } else {
+ /*
+ * Ok, old_page is still a genuine free hugepage. Remove it from
+ * the freelist and decrease the counters. These will be
+ * incremented again when calling __prep_account_new_huge_page()
+ * and enqueue_huge_page() for new_page. The counters will remain
+ * stable since this happens under the lock.
+ */
+ remove_hugetlb_page(h, old_page, false);
+
+ /*
+ * new_page needs to be initialized with the standard hugetlb
+ * state. This is normally done by prep_new_huge_page() but
+ * that takes hugetlb_lock which is already held so we need to
+ * open code it here.
+ * Reference count trick is needed because allocator gives us
+ * referenced page but the pool requires pages with 0 refcount.
+ */
+ __prep_new_huge_page(new_page);
+ __prep_account_new_huge_page(h, nid);
+ page_ref_dec(new_page);
+ enqueue_huge_page(h, new_page);
+
+ /*
+ * Pages have been replaced, we can safely free the old one.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_page(h, old_page);
+ }
+
+ return ret;
+
+free_new:
+ spin_unlock_irq(&hugetlb_lock);
+ __free_pages(new_page, huge_page_order(h));
+
+ return ret;
+}
+
+int isolate_or_dissolve_huge_page(struct page *page)
+{
+ struct hstate *h;
+ struct page *head;
+
+ /*
+ * The page might have been dissolved from under our feet, so make sure
+ * to carefully check the state under the lock.
+ * Return success when racing as if we dissolved the page ourselves.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ if (PageHuge(page)) {
+ head = compound_head(page);
+ h = page_hstate(head);
+ } else {
+ spin_unlock_irq(&hugetlb_lock);
+ return 0;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Fence off gigantic pages as there is a cyclic dependency between
+ * alloc_contig_range and them. Return -ENOMEM as this has the effect
+ * of bailing out right away without further retrying.
+ */
+ if (hstate_is_gigantic(h))
+ return -ENOMEM;
+
+ return alloc_and_dissolve_huge_page(h, head);
+}
+
struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve)
{