@@ -414,9 +414,6 @@ static void uffd_test_ctx_init_ext(uint6
uffd_test_ops->allocate_area((void **)&area_src);
uffd_test_ops->allocate_area((void **)&area_dst);
- uffd_test_ops->release_pages(area_src);
- uffd_test_ops->release_pages(area_dst);
-
userfaultfd_open(features);
count_verify = malloc(nr_pages * sizeof(unsigned long long));
@@ -437,6 +434,26 @@ static void uffd_test_ctx_init_ext(uint6
*(area_count(area_src, nr) + 1) = 1;
}
+ /*
+ * After initialization of area_src, we must explicitly release pages
+ * for area_dst to make sure it's fully empty. Otherwise we could have
+ * some area_dst pages be errornously initialized with zero pages,
+ * hence we could hit memory corruption later in the test.
+ *
+ * One example is when THP is globally enabled, above allocate_area()
+ * calls could have the two areas merged into a single VMA (as they
+ * will have the same VMA flags so they're mergeable). When we
+ * initialize the area_src above, it's possible that some part of
+ * area_dst could have been faulted in via one huge THP that will be
+ * shared between area_src and area_dst. It could cause some of the
+ * area_dst won't be trapped by missing userfaults.
+ *
+ * This release_pages() will guarantee even if that happened, we'll
+ * proactively split the thp and drop any accidentally initialized
+ * pages within area_dst.
+ */
+ uffd_test_ops->release_pages(area_dst);
+
pipefd = malloc(sizeof(int) * nr_cpus * 2);
if (!pipefd)
err("pipefd");