@@ -1619,7 +1619,7 @@
[KNL] Reguires CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
enabled.
Allows heavy hugetlb users to free up some more
- memory (6 * PAGE_SIZE for each 2MB hugetlb page).
+ memory (7 * PAGE_SIZE for each 2MB hugetlb page).
Format: { on | off (default) }
on: enable the feature
@@ -184,13 +184,69 @@ enum pageflags {
#ifndef __GENERATING_BOUNDS_H
+#ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
+extern bool hugetlb_free_vmemmap_enabled;
+
+/*
+ * If the feature of freeing some vmemmap pages associated with each HugeTLB
+ * page is enabled, the head vmemmap page frame is reused and all of the tail
+ * vmemmap addresses map to the head vmemmap page frame (furture details can
+ * refer to the figure at the head of the mm/hugetlb_vmemmap.c). In other
+ * words, there are more than one page struct with PG_head associated with each
+ * HugeTLB page. We __know__ that there is only one head page struct, the tail
+ * page structs with PG_head are fake head page structs. We need an approach
+ * to distinguish between those two different types of page structs so that
+ * compound_head() can return the real head page struct when the parameter is
+ * the tail page struct but with PG_head.
+ *
+ * The page_fixed_fake_head() returns the real head page struct if the @page is
+ * fake page head, otherwise, returns @page which can either be a true page
+ * head or tail.
+ */
+static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
+{
+ if (!hugetlb_free_vmemmap_enabled)
+ return page;
+
+ /*
+ * Only addresses aligned with PAGE_SIZE of struct page may be fake head
+ * struct page. The alignment check aims to avoid access the fields (
+ * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
+ * cold cacheline in some cases.
+ */
+ if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
+ test_bit(PG_head, &page->flags)) {
+ /*
+ * We can safely access the field of the @page[1] with PG_head
+ * because the @page is a compound page composed with at least
+ * two contiguous pages.
+ */
+ unsigned long head = READ_ONCE(page[1].compound_head);
+
+ if (likely(head & 1))
+ return (const struct page *)(head - 1);
+ }
+ return page;
+}
+#else
+static inline const struct page *page_fixed_fake_head(const struct page *page)
+{
+ return page;
+}
+#endif
+
+static __always_inline int page_is_fake_head(struct page *page)
+{
+ return page_fixed_fake_head(page) != page;
+}
+
static inline unsigned long _compound_head(const struct page *page)
{
unsigned long head = READ_ONCE(page->compound_head);
if (unlikely(head & 1))
return head - 1;
- return (unsigned long)page;
+ return (unsigned long)page_fixed_fake_head(page);
}
#define compound_head(page) ((typeof(page))_compound_head(page))
@@ -225,12 +281,13 @@ static inline unsigned long _compound_head(const struct page *page)
static __always_inline int PageTail(struct page *page)
{
- return READ_ONCE(page->compound_head) & 1;
+ return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
}
static __always_inline int PageCompound(struct page *page)
{
- return test_bit(PG_head, &page->flags) || PageTail(page);
+ return test_bit(PG_head, &page->flags) ||
+ READ_ONCE(page->compound_head) & 1;
}
#define PAGE_POISON_PATTERN -1l
@@ -675,7 +732,20 @@ static inline bool test_set_page_writeback(struct page *page)
return set_page_writeback(page);
}
-__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
+static __always_inline bool folio_test_head(struct folio *folio)
+{
+ return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
+}
+
+static __always_inline int PageHead(struct page *page)
+{
+ PF_POISONED_CHECK(page);
+ return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
+}
+
+__SETPAGEFLAG(Head, head, PF_ANY)
+__CLEARPAGEFLAG(Head, head, PF_ANY)
+CLEARPAGEFLAG(Head, head, PF_ANY)
/* Whether there are one or multiple pages in a folio */
static inline bool folio_test_single(struct folio *folio)
@@ -124,9 +124,9 @@
* page of page structs (page 0) associated with the HugeTLB page contains the 4
* page structs necessary to describe the HugeTLB. The only use of the remaining
* pages of page structs (page 1 to page 7) is to point to page->compound_head.
- * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
+ * Therefore, we can remap pages 1 to 7 to page 0. Only 1 page of page structs
* will be used for each HugeTLB page. This will allow us to free the remaining
- * 6 pages to the buddy allocator.
+ * 7 pages to the buddy allocator.
*
* Here is how things look after remapping.
*
@@ -134,30 +134,30 @@
* +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
* | | | 0 | -------------> | 0 |
* | | +-----------+ +-----------+
- * | | | 1 | -------------> | 1 |
- * | | +-----------+ +-----------+
- * | | | 2 | ----------------^ ^ ^ ^ ^ ^
- * | | +-----------+ | | | | |
- * | | | 3 | ------------------+ | | | |
- * | | +-----------+ | | | |
- * | | | 4 | --------------------+ | | |
- * | PMD | +-----------+ | | |
- * | level | | 5 | ----------------------+ | |
- * | mapping | +-----------+ | |
- * | | | 6 | ------------------------+ |
- * | | +-----------+ |
- * | | | 7 | --------------------------+
+ * | | | 1 | ---------------^ ^ ^ ^ ^ ^ ^
+ * | | +-----------+ | | | | | |
+ * | | | 2 | -----------------+ | | | | |
+ * | | +-----------+ | | | | |
+ * | | | 3 | -------------------+ | | | |
+ * | | +-----------+ | | | |
+ * | | | 4 | ---------------------+ | | |
+ * | PMD | +-----------+ | | |
+ * | level | | 5 | -----------------------+ | |
+ * | mapping | +-----------+ | |
+ * | | | 6 | -------------------------+ |
+ * | | +-----------+ |
+ * | | | 7 | ---------------------------+
* | | +-----------+
* | |
* | |
* | |
* +-----------+
*
- * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
+ * When a HugeTLB is freed to the buddy system, we should allocate 7 pages for
* vmemmap pages and restore the previous mapping relationship.
*
* For the HugeTLB page of the pud level mapping. It is similar to the former.
- * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
+ * We also can use this approach to free (PAGE_SIZE - 1) vmemmap pages.
*
* Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
* (e.g. aarch64) provides a contiguous bit in the translation table entries
@@ -166,7 +166,13 @@
*
* The contiguous bit is used to increase the mapping size at the pmd and pte
* (last) level. So this type of HugeTLB page can be optimized only when its
- * size of the struct page structs is greater than 2 pages.
+ * size of the struct page structs is greater than 1 page.
+ *
+ * Notice: The head vmemmap page is not freed to the buddy allocator and all
+ * tail vmemmap pages are mapped to the head vmemmap page frame. So we can see
+ * more than one struct page struct with PG_head (e.g. 8 per 2 MB HugeTLB page)
+ * associated with each HugeTLB page. The compound_head() can handle this
+ * correctly (more details refer to the comment above compound_head()).
*/
#define pr_fmt(fmt) "HugeTLB: " fmt
@@ -175,19 +181,21 @@
/*
* There are a lot of struct page structures associated with each HugeTLB page.
* For tail pages, the value of compound_head is the same. So we can reuse first
- * page of tail page structures. We map the virtual addresses of the remaining
- * pages of tail page structures to the first tail page struct, and then free
- * these page frames. Therefore, we need to reserve two pages as vmemmap areas.
+ * page of head page structures. We map the virtual addresses of all the pages
+ * of tail page structures to the head page struct, and then free these page
+ * frames. Therefore, we need to reserve one pages as vmemmap areas.
*/
-#define RESERVE_VMEMMAP_NR 2U
+#define RESERVE_VMEMMAP_NR 1U
#define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT)
-bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
+bool hugetlb_free_vmemmap_enabled __read_mostly =
+ IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
+EXPORT_SYMBOL(hugetlb_free_vmemmap_enabled);
static int __init early_hugetlb_free_vmemmap_param(char *buf)
{
/* We cannot optimize if a "struct page" crosses page boundaries. */
- if ((!is_power_of_2(sizeof(struct page)))) {
+ if (!is_power_of_2(sizeof(struct page))) {
pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
return 0;
}
@@ -236,7 +244,6 @@ int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
*/
ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
-
if (!ret)
ClearHPageVmemmapOptimized(head);
@@ -282,9 +289,8 @@ void __init hugetlb_vmemmap_init(struct hstate *h)
vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
/*
- * The head page and the first tail page are not to be freed to buddy
- * allocator, the other pages will map to the first tail page, so they
- * can be freed.
+ * The head page is not to be freed to buddy allocator, the other tail
+ * pages will map to the head page, so they can be freed.
*
* Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
* on some architectures (e.g. aarch64). See Documentation/arm64/
@@ -245,6 +245,26 @@ static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
set_pte_at(&init_mm, addr, pte, entry);
}
+/*
+ * How many struct page structs need to be reset. When we reuse the head
+ * struct page, the special metadata (e.g. page->flags or page->mapping)
+ * cannot copy to the tail struct page structs. The invalid value will be
+ * checked in the free_tail_pages_check(). In order to avoid the message
+ * of "corrupted mapping in tail page". We need to reset at least 3 (one
+ * head struct page struct and two tail struct page structs) struct page
+ * structs.
+ */
+#define NR_RESET_STRUCT_PAGE 3
+
+static inline void reset_struct_pages(struct page *start)
+{
+ int i;
+ struct page *from = start + NR_RESET_STRUCT_PAGE;
+
+ for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
+ memcpy(start + i, from, sizeof(*from));
+}
+
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
@@ -258,6 +278,7 @@ static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
list_del(&page->lru);
to = page_to_virt(page);
copy_page(to, (void *)walk->reuse_addr);
+ reset_struct_pages(to);
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}