Message ID | 20220905081552.2740917-8-senozhatsky@chromium.org (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | zram: Support multiple compression streams | expand |
On Mon, Sep 5, 2022 at 9:00 PM Sergey Senozhatsky <senozhatsky@chromium.org> wrote: > > Allow zram to recompress (using secondary compression streams) > pages. We support three modes: > > 1) IDLE pages recompression is activated by `idle` mode > > echo idle > /sys/block/zram0/recompress > > 2) Since there may be many idle pages user-space may pass a size > watermark value and we will recompress IDLE pages only of equal > or greater size: > > echo 888 > /sys/block/zram0/recompress > > 3) HUGE pages recompression is activated by `huge` mode > > echo huge > /sys/block/zram0/recompress Thanks for developing this interesting feature. It seems reasonable for cold pages. But for a huge page, do you have some data to show that the hugepage is not compressed by lzo/lz4 so we need zstd further? i assume the size of the huge page you are talking about is 2MB? what if the huge page is not cold and swapped out/in frequently? on second thoughts, it seems you mean hugepage is those pages whose compressed data is big? if so, can you please avoid using "huge page" as it is quite misleading in linux. we are using hugepage for pages larger than 4KB. > > 4) HUGE_IDLE pages recompression is activated by `huge_idle` mode > > echo huge_idle > /sys/block/zram0/recompress > > Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> > --- > drivers/block/zram/Kconfig | 11 ++ > drivers/block/zram/zram_drv.c | 191 +++++++++++++++++++++++++++++++++- > drivers/block/zram/zram_drv.h | 1 + > 3 files changed, 200 insertions(+), 3 deletions(-) > > diff --git a/drivers/block/zram/Kconfig b/drivers/block/zram/Kconfig > index d4100b0c083e..81ae4b96ec1a 100644 > --- a/drivers/block/zram/Kconfig > +++ b/drivers/block/zram/Kconfig > @@ -78,3 +78,14 @@ config ZRAM_MEMORY_TRACKING > /sys/kernel/debug/zram/zramX/block_state. > > See Documentation/admin-guide/blockdev/zram.rst for more information. > + > +config ZRAM_MULTI_COMP > + bool "Enable multiple per-CPU compression streams" > + depends on ZRAM > + help > + This will enable per-CPU multi-compression streams, so that ZRAM > + can re-compress IDLE pages, using a potentially slower but more > + effective compression algorithm. > + > + echo TIMEOUT > /sys/block/zramX/idle > + echo SIZE > /sys/block/zramX/recompress > diff --git a/drivers/block/zram/zram_drv.c b/drivers/block/zram/zram_drv.c > index de2970865b7b..386e49a13806 100644 > --- a/drivers/block/zram/zram_drv.c > +++ b/drivers/block/zram/zram_drv.c > @@ -1293,6 +1293,9 @@ static void zram_free_page(struct zram *zram, size_t index) > atomic64_dec(&zram->stats.huge_pages); > } > > + if (zram_test_flag(zram, index, ZRAM_RECOMP)) > + zram_clear_flag(zram, index, ZRAM_RECOMP); > + > if (zram_test_flag(zram, index, ZRAM_WB)) { > zram_clear_flag(zram, index, ZRAM_WB); > free_block_bdev(zram, zram_get_element(zram, index)); > @@ -1357,6 +1360,7 @@ static int zram_read_from_zspool(struct zram *zram, > unsigned long handle; > unsigned int size; > void *src, *dst; > + u32 idx; > int ret; > > handle = zram_get_handle(zram, index); > @@ -1373,8 +1377,13 @@ static int zram_read_from_zspool(struct zram *zram, > > size = zram_get_obj_size(zram, index); > > - if (size != PAGE_SIZE) > - zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_ZCOMP]); > + if (size != PAGE_SIZE) { > + idx = ZRAM_PRIMARY_ZCOMP; > + if (zram_test_flag(zram, index, ZRAM_RECOMP)) > + idx = ZRAM_SECONDARY_ZCOMP; > + > + zstrm = zcomp_stream_get(zram->comps[idx]); > + } > > src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); > if (size == PAGE_SIZE) { > @@ -1386,7 +1395,7 @@ static int zram_read_from_zspool(struct zram *zram, > dst = kmap_atomic(page); > ret = zcomp_decompress(zstrm, src, size, dst); > kunmap_atomic(dst); > - zcomp_stream_put(zram->comps[ZRAM_PRIMARY_ZCOMP]); > + zcomp_stream_put(zram->comps[idx]); > } > zs_unmap_object(zram->mem_pool, handle); > return ret; > @@ -1612,6 +1621,180 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, > return ret; > } > > +#ifdef CONFIG_ZRAM_MULTI_COMP > +/* > + * This function will decompress (unless it's ZRAM_HUGE) the page and then > + * attempt to compress it using secondary compression algorithm (which is > + * potentially more effective). > + * > + * Corresponding ZRAM slot should be locked. > + */ > +static int zram_recompress(struct zram *zram, > + u32 index, > + struct page *page, > + int size_watermark) > +{ > + unsigned long handle_prev; > + unsigned long handle_next; > + unsigned int comp_len_next; > + unsigned int comp_len_prev; > + struct zcomp_strm *zstrm; > + void *src, *dst; > + int ret; > + > + handle_prev = zram_get_handle(zram, index); > + if (!handle_prev) > + return -EINVAL; > + > + comp_len_prev = zram_get_obj_size(zram, index); > + /* > + * Do not recompress objects that are already "small enough". > + */ > + if (comp_len_prev < size_watermark) > + return 0; > + > + ret = zram_read_from_zspool(zram, page, index); > + if (ret) > + return ret; > + > + zstrm = zcomp_stream_get(zram->comps[ZRAM_SECONDARY_ZCOMP]); > + src = kmap_atomic(page); > + ret = zcomp_compress(zstrm, src, &comp_len_next); > + kunmap_atomic(src); > + > + /* > + * Either a compression error or we failed to compressed the object > + * in a way that will save us memory. Mark object as "recompressed" > + * if it's huge, so that we don't try to recompress it again. Ideally > + * we want to set some bit for all such objects, but we for now do so > + * only for huge ones (we are out of bits in flags on 32-bit systems). > + */ > + if (comp_len_next >= huge_class_size || > + comp_len_next >= comp_len_prev || > + ret) { > + if (zram_test_flag(zram, index, ZRAM_HUGE)) > + zram_set_flag(zram, index, ZRAM_RECOMP); > + zram_clear_flag(zram, index, ZRAM_IDLE); > + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); > + return ret; > + } > + > + /* > + * No direct reclaim (slow path) for handle allocation and no > + * re-compression attempt (unlike in __zram_bvec_write()) since > + * we already stored that object in zsmalloc. If we cannot alloc > + * memory then me bail out. > + */ > + handle_next = zs_malloc(zram->mem_pool, comp_len_next, > + __GFP_KSWAPD_RECLAIM | > + __GFP_NOWARN | > + __GFP_HIGHMEM | > + __GFP_MOVABLE); > + if (IS_ERR((void *)handle_next)) { > + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); > + return -ENOMEM; > + } > + > + dst = zs_map_object(zram->mem_pool, handle_next, ZS_MM_WO); > + memcpy(dst, zstrm->buffer, comp_len_next); > + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); > + > + zs_unmap_object(zram->mem_pool, handle_next); > + > + zram_free_page(zram, index); > + zram_set_handle(zram, index, handle_next); > + zram_set_obj_size(zram, index, comp_len_next); > + > + zram_set_flag(zram, index, ZRAM_RECOMP); > + atomic64_add(comp_len_next, &zram->stats.compr_data_size); > + atomic64_inc(&zram->stats.pages_stored); > + > + return 0; > +} > + > +#define RECOMPRESS_IDLE (1 << 0) > +#define RECOMPRESS_HUGE (1 << 1) > + > +static ssize_t recompress_store(struct device *dev, > + struct device_attribute *attr, > + const char *buf, > + size_t len) > +{ > + struct zram *zram = dev_to_zram(dev); > + unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; > + unsigned long index; > + struct page *page; > + ssize_t ret = 0; > + int mode, size_watermark = 0; > + > + if (sysfs_streq(buf, "idle")) { > + mode = RECOMPRESS_IDLE; > + } else if (sysfs_streq(buf, "huge")) { > + mode = RECOMPRESS_HUGE; > + } else if (sysfs_streq(buf, "huge_idle")) { > + mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; > + } else { > + /* > + * We will re-compress only idle objects equal or greater > + * in size than watermark. > + */ > + ret = kstrtoint(buf, 10, &size_watermark); > + if (ret) > + return ret; > + mode = RECOMPRESS_IDLE; > + } > + > + if (size_watermark > PAGE_SIZE) > + return ret; > + > + down_read(&zram->init_lock); > + if (!init_done(zram)) { > + ret = -EINVAL; > + goto release_init_lock; > + } > + > + page = alloc_page(GFP_KERNEL); > + if (!page) { > + ret = -ENOMEM; > + goto release_init_lock; > + } > + > + for (index = 0; index < nr_pages; index++) { > + zram_slot_lock(zram, index); > + > + if (!zram_allocated(zram, index)) > + goto next; > + > + if (mode & RECOMPRESS_IDLE && > + !zram_test_flag(zram, index, ZRAM_IDLE)) > + goto next; > + > + if (mode & RECOMPRESS_HUGE && > + !zram_test_flag(zram, index, ZRAM_HUGE)) > + goto next; > + > + if (zram_test_flag(zram, index, ZRAM_WB) || > + zram_test_flag(zram, index, ZRAM_UNDER_WB) || > + zram_test_flag(zram, index, ZRAM_SAME) || > + zram_test_flag(zram, index, ZRAM_RECOMP)) > + goto next; > + > + ret = zram_recompress(zram, index, page, size_watermark); > +next: > + zram_slot_unlock(zram, index); > + if (ret) > + break; > + } > + > + ret = len; > + __free_page(page); > + > +release_init_lock: > + up_read(&zram->init_lock); > + return ret; > +} > +#endif > + > /* > * zram_bio_discard - handler on discard request > * @index: physical block index in PAGE_SIZE units > @@ -2001,6 +2184,7 @@ static DEVICE_ATTR_RW(writeback_limit_enable); > #endif > #ifdef CONFIG_ZRAM_MULTI_COMP > static DEVICE_ATTR_RW(recomp_algorithm); > +static DEVICE_ATTR_WO(recompress); > #endif > > static struct attribute *zram_disk_attrs[] = { > @@ -2027,6 +2211,7 @@ static struct attribute *zram_disk_attrs[] = { > &dev_attr_debug_stat.attr, > #ifdef CONFIG_ZRAM_MULTI_COMP > &dev_attr_recomp_algorithm.attr, > + &dev_attr_recompress.attr, > #endif > NULL, > }; > diff --git a/drivers/block/zram/zram_drv.h b/drivers/block/zram/zram_drv.h > index af3d6f6bfcff..b4eecef2a11f 100644 > --- a/drivers/block/zram/zram_drv.h > +++ b/drivers/block/zram/zram_drv.h > @@ -50,6 +50,7 @@ enum zram_pageflags { > ZRAM_UNDER_WB, /* page is under writeback */ > ZRAM_HUGE, /* Incompressible page */ > ZRAM_IDLE, /* not accessed page since last idle marking */ > + ZRAM_RECOMP, /* page was recompressed */ > > __NR_ZRAM_PAGEFLAGS, > }; > -- > 2.37.2.789.g6183377224-goog > Thanks Barry
On (22/09/05 21:21), Barry Song wrote: > > 3) HUGE pages recompression is activated by `huge` mode > > > > echo huge > /sys/block/zram0/recompress > > Thanks for developing this interesting feature. It seems reasonable for cold > pages. But for a huge page, do you have some data to show that the hugepage > is not compressed by lzo/lz4 so we need zstd further? i assume the size of > the huge page you are talking about is 2MB? Oh, yeah, this is the lingo we use in zram. We used "huge" object and "huge" size class in zsmalloc and the term "huge" transitioned to zram, but zram operates with pages not objects, so huge zsmalloc object is "huge zram page". > on second thoughts, it seems you mean hugepage is those pages > whose compressed data is big? if so, can you please avoid using > "huge page" as it is quite misleading in linux. we are using hugepage > for pages larger than 4KB. Yes, you are right. And I wish I could use a different term, but... this is what zram has been using for many years: Documentation/admin-guide/blockdev/zram.rst And we already accept "huge" and "huge pages", and so, in sysfs knobs (zram device attrs), so the confusing term, unfortunately, is there forever.
On Mon, Sep 5, 2022 at 9:53 PM Sergey Senozhatsky <senozhatsky@chromium.org> wrote: > > On (22/09/05 21:21), Barry Song wrote: > > > 3) HUGE pages recompression is activated by `huge` mode > > > > > > echo huge > /sys/block/zram0/recompress > > > > Thanks for developing this interesting feature. It seems reasonable for cold > > pages. But for a huge page, do you have some data to show that the hugepage > > is not compressed by lzo/lz4 so we need zstd further? i assume the size of > > the huge page you are talking about is 2MB? > > Oh, yeah, this is the lingo we use in zram. We used "huge" object and "huge" > size class in zsmalloc and the term "huge" transitioned to zram, but zram > operates with pages not objects, so huge zsmalloc object is "huge zram page". > > > on second thoughts, it seems you mean hugepage is those pages > > whose compressed data is big? if so, can you please avoid using > > "huge page" as it is quite misleading in linux. we are using hugepage > > for pages larger than 4KB. > > Yes, you are right. And I wish I could use a different term, but... > this is what zram has been using for many years: > Documentation/admin-guide/blockdev/zram.rst > > And we already accept "huge" and "huge pages", and so, in sysfs knobs > (zram device attrs), so the confusing term, unfortunately, is there > forever. make sense! thanks! i assume you will have some benchmark data to compare three cases, 1. lzo with recompress zstd 2. always use lzo 3. always use zstd such as power consumption, cpu utilization, available memory, benefits to user experiences especially to UI smoothness under memory pressure? Thanks Barry
On (22/09/05 22:06), Barry Song wrote: > > make sense! thanks! i assume you will have some benchmark data to compare > three cases, > 1. lzo with recompress zstd > 2. always use lzo > 3. always use zstd > > such as power consumption, cpu utilization, available memory, benefits to user > experiences especially to UI smoothness under memory pressure? So I didn't want to include any benchmarks, because this is entirely specific to device's data sets/patterns. In term of CPU usage, zstd decompression is really fast [1]; and the way plan to use is battery aware - e.g. when low on battery do not recompress at all, if AC is plugged in then recompress more aggressively, etc. In term of benchmarks... a copy paste from our internal tests. But *do note* that this is relative only to our specific data sets. Your millage may vary. ZSTD recomp algorithm (5.10 kernel, so the last column is the number of 'zram huge pages'): - Initial state of zram swap partition localhost ~ # cat /sys/block/zram0/mm_stat 8955662336 2180671776 2277711872 0 3179720704 798724 469474 118949 - Recompress HUGE objects only localhost ~ # echo huge > /sys/block/zram0/recompress localhost ~ # cat /sys/block/zram0/mm_stat 8944390144 2106998658 2211835904 0 3179720704 798617 469474 66821 - Recompress IDLE pages that are >= 3000 bytes in size localhost ~ # echo 3000 > /sys/block/zram0/recompress localhost ~ # cat /sys/block/zram0/mm_stat 8934166528 2085232505 2207690752 0 3179720704 798484 469474 66811 - Recompress the remaining IDLE pages that are >= 2000 bytes in size localhost ~ # echo 2000 > /sys/block/zram0/recompress localhost ~ # cat /sys/block/zram0/mm_stat 8913981440 1946488434 2145157120 0 3179720704 798130 469474 66498 - Recompress the remaining IDLE pages that are >= 1000 bytes in size localhost ~ # echo 1000 > /sys/block/zram0/recompress localhost ~ # cat /sys/block/zram0/mm_stat 8905592832 1711533182 1984495616 0 3179720704 797162 469474 66222 [1] https://facebook.github.io/zstd/
On Mon, Sep 5, 2022 at 10:17 PM Sergey Senozhatsky <senozhatsky@chromium.org> wrote: > > On (22/09/05 22:06), Barry Song wrote: > > > > make sense! thanks! i assume you will have some benchmark data to compare > > three cases, > > 1. lzo with recompress zstd > > 2. always use lzo > > 3. always use zstd > > > > such as power consumption, cpu utilization, available memory, benefits to user > > experiences especially to UI smoothness under memory pressure? > > So I didn't want to include any benchmarks, because this is entirely > specific to device's data sets/patterns. In term of CPU usage, zstd > decompression is really fast [1]; and the way plan to use is battery > aware - e.g. when low on battery do not recompress at all, if AC is > plugged in then recompress more aggressively, etc. > > In term of benchmarks... a copy paste from our internal tests. But > *do note* that this is relative only to our specific data sets. > Your millage may vary. > > ZSTD recomp algorithm (5.10 kernel, so the last column is the number of > 'zram huge pages'): > > - Initial state of zram swap partition > localhost ~ # cat /sys/block/zram0/mm_stat > 8955662336 2180671776 2277711872 0 3179720704 798724 469474 118949 > > - Recompress HUGE objects only > localhost ~ # echo huge > /sys/block/zram0/recompress > localhost ~ # cat /sys/block/zram0/mm_stat > 8944390144 2106998658 2211835904 0 3179720704 798617 469474 66821 > > - Recompress IDLE pages that are >= 3000 bytes in size > localhost ~ # echo 3000 > /sys/block/zram0/recompress > localhost ~ # cat /sys/block/zram0/mm_stat > 8934166528 2085232505 2207690752 0 3179720704 798484 469474 66811 > > - Recompress the remaining IDLE pages that are >= 2000 bytes in size > localhost ~ # echo 2000 > /sys/block/zram0/recompress > localhost ~ # cat /sys/block/zram0/mm_stat > 8913981440 1946488434 2145157120 0 3179720704 798130 469474 66498 > > - Recompress the remaining IDLE pages that are >= 1000 bytes in size > localhost ~ # echo 1000 > /sys/block/zram0/recompress > localhost ~ # cat /sys/block/zram0/mm_stat > 8905592832 1711533182 1984495616 0 3179720704 797162 469474 66222 > > [1] https://facebook.github.io/zstd/ Thanks very much. I guess the difficulty is that we need to comprehensively evaluate its effect on a real product such as android. there is always a trade-off between cpu utilization and more available memory. Best Regards Barry
diff --git a/drivers/block/zram/Kconfig b/drivers/block/zram/Kconfig index d4100b0c083e..81ae4b96ec1a 100644 --- a/drivers/block/zram/Kconfig +++ b/drivers/block/zram/Kconfig @@ -78,3 +78,14 @@ config ZRAM_MEMORY_TRACKING /sys/kernel/debug/zram/zramX/block_state. See Documentation/admin-guide/blockdev/zram.rst for more information. + +config ZRAM_MULTI_COMP + bool "Enable multiple per-CPU compression streams" + depends on ZRAM + help + This will enable per-CPU multi-compression streams, so that ZRAM + can re-compress IDLE pages, using a potentially slower but more + effective compression algorithm. + + echo TIMEOUT > /sys/block/zramX/idle + echo SIZE > /sys/block/zramX/recompress diff --git a/drivers/block/zram/zram_drv.c b/drivers/block/zram/zram_drv.c index de2970865b7b..386e49a13806 100644 --- a/drivers/block/zram/zram_drv.c +++ b/drivers/block/zram/zram_drv.c @@ -1293,6 +1293,9 @@ static void zram_free_page(struct zram *zram, size_t index) atomic64_dec(&zram->stats.huge_pages); } + if (zram_test_flag(zram, index, ZRAM_RECOMP)) + zram_clear_flag(zram, index, ZRAM_RECOMP); + if (zram_test_flag(zram, index, ZRAM_WB)) { zram_clear_flag(zram, index, ZRAM_WB); free_block_bdev(zram, zram_get_element(zram, index)); @@ -1357,6 +1360,7 @@ static int zram_read_from_zspool(struct zram *zram, unsigned long handle; unsigned int size; void *src, *dst; + u32 idx; int ret; handle = zram_get_handle(zram, index); @@ -1373,8 +1377,13 @@ static int zram_read_from_zspool(struct zram *zram, size = zram_get_obj_size(zram, index); - if (size != PAGE_SIZE) - zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_ZCOMP]); + if (size != PAGE_SIZE) { + idx = ZRAM_PRIMARY_ZCOMP; + if (zram_test_flag(zram, index, ZRAM_RECOMP)) + idx = ZRAM_SECONDARY_ZCOMP; + + zstrm = zcomp_stream_get(zram->comps[idx]); + } src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); if (size == PAGE_SIZE) { @@ -1386,7 +1395,7 @@ static int zram_read_from_zspool(struct zram *zram, dst = kmap_atomic(page); ret = zcomp_decompress(zstrm, src, size, dst); kunmap_atomic(dst); - zcomp_stream_put(zram->comps[ZRAM_PRIMARY_ZCOMP]); + zcomp_stream_put(zram->comps[idx]); } zs_unmap_object(zram->mem_pool, handle); return ret; @@ -1612,6 +1621,180 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, return ret; } +#ifdef CONFIG_ZRAM_MULTI_COMP +/* + * This function will decompress (unless it's ZRAM_HUGE) the page and then + * attempt to compress it using secondary compression algorithm (which is + * potentially more effective). + * + * Corresponding ZRAM slot should be locked. + */ +static int zram_recompress(struct zram *zram, + u32 index, + struct page *page, + int size_watermark) +{ + unsigned long handle_prev; + unsigned long handle_next; + unsigned int comp_len_next; + unsigned int comp_len_prev; + struct zcomp_strm *zstrm; + void *src, *dst; + int ret; + + handle_prev = zram_get_handle(zram, index); + if (!handle_prev) + return -EINVAL; + + comp_len_prev = zram_get_obj_size(zram, index); + /* + * Do not recompress objects that are already "small enough". + */ + if (comp_len_prev < size_watermark) + return 0; + + ret = zram_read_from_zspool(zram, page, index); + if (ret) + return ret; + + zstrm = zcomp_stream_get(zram->comps[ZRAM_SECONDARY_ZCOMP]); + src = kmap_atomic(page); + ret = zcomp_compress(zstrm, src, &comp_len_next); + kunmap_atomic(src); + + /* + * Either a compression error or we failed to compressed the object + * in a way that will save us memory. Mark object as "recompressed" + * if it's huge, so that we don't try to recompress it again. Ideally + * we want to set some bit for all such objects, but we for now do so + * only for huge ones (we are out of bits in flags on 32-bit systems). + */ + if (comp_len_next >= huge_class_size || + comp_len_next >= comp_len_prev || + ret) { + if (zram_test_flag(zram, index, ZRAM_HUGE)) + zram_set_flag(zram, index, ZRAM_RECOMP); + zram_clear_flag(zram, index, ZRAM_IDLE); + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); + return ret; + } + + /* + * No direct reclaim (slow path) for handle allocation and no + * re-compression attempt (unlike in __zram_bvec_write()) since + * we already stored that object in zsmalloc. If we cannot alloc + * memory then me bail out. + */ + handle_next = zs_malloc(zram->mem_pool, comp_len_next, + __GFP_KSWAPD_RECLAIM | + __GFP_NOWARN | + __GFP_HIGHMEM | + __GFP_MOVABLE); + if (IS_ERR((void *)handle_next)) { + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); + return -ENOMEM; + } + + dst = zs_map_object(zram->mem_pool, handle_next, ZS_MM_WO); + memcpy(dst, zstrm->buffer, comp_len_next); + zcomp_stream_put(zram->comps[ZRAM_SECONDARY_ZCOMP]); + + zs_unmap_object(zram->mem_pool, handle_next); + + zram_free_page(zram, index); + zram_set_handle(zram, index, handle_next); + zram_set_obj_size(zram, index, comp_len_next); + + zram_set_flag(zram, index, ZRAM_RECOMP); + atomic64_add(comp_len_next, &zram->stats.compr_data_size); + atomic64_inc(&zram->stats.pages_stored); + + return 0; +} + +#define RECOMPRESS_IDLE (1 << 0) +#define RECOMPRESS_HUGE (1 << 1) + +static ssize_t recompress_store(struct device *dev, + struct device_attribute *attr, + const char *buf, + size_t len) +{ + struct zram *zram = dev_to_zram(dev); + unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; + unsigned long index; + struct page *page; + ssize_t ret = 0; + int mode, size_watermark = 0; + + if (sysfs_streq(buf, "idle")) { + mode = RECOMPRESS_IDLE; + } else if (sysfs_streq(buf, "huge")) { + mode = RECOMPRESS_HUGE; + } else if (sysfs_streq(buf, "huge_idle")) { + mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; + } else { + /* + * We will re-compress only idle objects equal or greater + * in size than watermark. + */ + ret = kstrtoint(buf, 10, &size_watermark); + if (ret) + return ret; + mode = RECOMPRESS_IDLE; + } + + if (size_watermark > PAGE_SIZE) + return ret; + + down_read(&zram->init_lock); + if (!init_done(zram)) { + ret = -EINVAL; + goto release_init_lock; + } + + page = alloc_page(GFP_KERNEL); + if (!page) { + ret = -ENOMEM; + goto release_init_lock; + } + + for (index = 0; index < nr_pages; index++) { + zram_slot_lock(zram, index); + + if (!zram_allocated(zram, index)) + goto next; + + if (mode & RECOMPRESS_IDLE && + !zram_test_flag(zram, index, ZRAM_IDLE)) + goto next; + + if (mode & RECOMPRESS_HUGE && + !zram_test_flag(zram, index, ZRAM_HUGE)) + goto next; + + if (zram_test_flag(zram, index, ZRAM_WB) || + zram_test_flag(zram, index, ZRAM_UNDER_WB) || + zram_test_flag(zram, index, ZRAM_SAME) || + zram_test_flag(zram, index, ZRAM_RECOMP)) + goto next; + + ret = zram_recompress(zram, index, page, size_watermark); +next: + zram_slot_unlock(zram, index); + if (ret) + break; + } + + ret = len; + __free_page(page); + +release_init_lock: + up_read(&zram->init_lock); + return ret; +} +#endif + /* * zram_bio_discard - handler on discard request * @index: physical block index in PAGE_SIZE units @@ -2001,6 +2184,7 @@ static DEVICE_ATTR_RW(writeback_limit_enable); #endif #ifdef CONFIG_ZRAM_MULTI_COMP static DEVICE_ATTR_RW(recomp_algorithm); +static DEVICE_ATTR_WO(recompress); #endif static struct attribute *zram_disk_attrs[] = { @@ -2027,6 +2211,7 @@ static struct attribute *zram_disk_attrs[] = { &dev_attr_debug_stat.attr, #ifdef CONFIG_ZRAM_MULTI_COMP &dev_attr_recomp_algorithm.attr, + &dev_attr_recompress.attr, #endif NULL, }; diff --git a/drivers/block/zram/zram_drv.h b/drivers/block/zram/zram_drv.h index af3d6f6bfcff..b4eecef2a11f 100644 --- a/drivers/block/zram/zram_drv.h +++ b/drivers/block/zram/zram_drv.h @@ -50,6 +50,7 @@ enum zram_pageflags { ZRAM_UNDER_WB, /* page is under writeback */ ZRAM_HUGE, /* Incompressible page */ ZRAM_IDLE, /* not accessed page since last idle marking */ + ZRAM_RECOMP, /* page was recompressed */ __NR_ZRAM_PAGEFLAGS, };
Allow zram to recompress (using secondary compression streams) pages. We support three modes: 1) IDLE pages recompression is activated by `idle` mode echo idle > /sys/block/zram0/recompress 2) Since there may be many idle pages user-space may pass a size watermark value and we will recompress IDLE pages only of equal or greater size: echo 888 > /sys/block/zram0/recompress 3) HUGE pages recompression is activated by `huge` mode echo huge > /sys/block/zram0/recompress 4) HUGE_IDLE pages recompression is activated by `huge_idle` mode echo huge_idle > /sys/block/zram0/recompress Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> --- drivers/block/zram/Kconfig | 11 ++ drivers/block/zram/zram_drv.c | 191 +++++++++++++++++++++++++++++++++- drivers/block/zram/zram_drv.h | 1 + 3 files changed, 200 insertions(+), 3 deletions(-)