diff mbox series

[PATCHv12,6/9] efi/unaccepted: Avoid load_unaligned_zeropad() stepping into unaccepted memory

Message ID 20230518231434.26080-7-kirill.shutemov@linux.intel.com (mailing list archive)
State New
Headers show
Series mm, x86/cc, efi: Implement support for unaccepted memory | expand

Commit Message

Kirill A. Shutemov May 18, 2023, 11:14 p.m. UTC
load_unaligned_zeropad() can lead to unwanted loads across page boundaries.
The unwanted loads are typically harmless. But, they might be made to
totally unrelated or even unmapped memory. load_unaligned_zeropad()
relies on exception fixup (#PF, #GP and now #VE) to recover from these
unwanted loads.

But, this approach does not work for unaccepted memory. For TDX, a load
from unaccepted memory will not lead to a recoverable exception within
the guest. The guest will exit to the VMM where the only recourse is to
terminate the guest.

There are two parts to fix this issue and comprehensively avoid access
to unaccepted memory. Together these ensure that an extra "guard" page
is accepted in addition to the memory that needs to be used.

1. Implicitly extend the range_contains_unaccepted_memory(start, end)
   checks up to end+unit_size if 'end' is aligned on a unit_size
   boundary.
2. Implicitly extend accept_memory(start, end) to end+unit_size if 'end'
   is aligned on a unit_size boundary.

Side note: This leads to something strange. Pages which were accepted
	   at boot, marked by the firmware as accepted and will never
	   _need_ to be accepted might be on unaccepted_pages list
	   This is a cue to ensure that the next page is accepted
	   before 'page' can be used.

This is an actual, real-world problem which was discovered during TDX
testing.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
---
 drivers/firmware/efi/unaccepted_memory.c | 35 ++++++++++++++++++++++++
 1 file changed, 35 insertions(+)
diff mbox series

Patch

diff --git a/drivers/firmware/efi/unaccepted_memory.c b/drivers/firmware/efi/unaccepted_memory.c
index bb91c41f76fb..3d1ca60916dd 100644
--- a/drivers/firmware/efi/unaccepted_memory.c
+++ b/drivers/firmware/efi/unaccepted_memory.c
@@ -37,6 +37,34 @@  void accept_memory(phys_addr_t start, phys_addr_t end)
 	start -= unaccepted->phys_base;
 	end -= unaccepted->phys_base;
 
+	/*
+	 * load_unaligned_zeropad() can lead to unwanted loads across page
+	 * boundaries. The unwanted loads are typically harmless. But, they
+	 * might be made to totally unrelated or even unmapped memory.
+	 * load_unaligned_zeropad() relies on exception fixup (#PF, #GP and now
+	 * #VE) to recover from these unwanted loads.
+	 *
+	 * But, this approach does not work for unaccepted memory. For TDX, a
+	 * load from unaccepted memory will not lead to a recoverable exception
+	 * within the guest. The guest will exit to the VMM where the only
+	 * recourse is to terminate the guest.
+	 *
+	 * There are two parts to fix this issue and comprehensively avoid
+	 * access to unaccepted memory. Together these ensure that an extra
+	 * "guard" page is accepted in addition to the memory that needs to be
+	 * used:
+	 *
+	 * 1. Implicitly extend the range_contains_unaccepted_memory(start, end)
+	 *    checks up to end+unit_size if 'end' is aligned on a unit_size
+	 *    boundary.
+	 *
+	 * 2. Implicitly extend accept_memory(start, end) to end+unit_size if
+	 *    'end' is aligned on a unit_size boundary. (immediately following
+	 *    this comment)
+	 */
+	if (!(end % unit_size))
+		end += unit_size;
+
 	/* Make sure not to overrun the bitmap */
 	if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
 		end = unaccepted->size * unit_size * BITS_PER_BYTE;
@@ -84,6 +112,13 @@  bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end)
 	start -= unaccepted->phys_base;
 	end -= unaccepted->phys_base;
 
+	/*
+	 * Also consider the unaccepted state of the *next* page. See fix #1 in
+	 * the comment on load_unaligned_zeropad() in accept_memory().
+	 */
+	if (!(end % unit_size))
+		end += unit_size;
+
 	/* Make sure not to overrun the bitmap */
 	if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
 		end = unaccepted->size * unit_size * BITS_PER_BYTE;