@@ -22,6 +22,8 @@
*/
#define PAGE_SHIFT CONFIG_PPC_PAGE_SHIFT
#define PAGE_SIZE (ASM_CONST(1) << PAGE_SHIFT)
+#define PAGE_SHIFT_4K 12
+#define PAGE_SIZE_4K (1 << PAGE_SHIFT_4K)
#ifndef __ASSEMBLY__
#ifndef CONFIG_HUGETLB_PAGE
@@ -4117,6 +4117,7 @@ static inline int calculate_order(unsigned int size)
unsigned int min_objects;
unsigned int max_objects;
unsigned int nr_cpus;
+ unsigned int page_frac;
/*
* Attempt to find best configuration for a slab. This
@@ -4145,10 +4146,12 @@ static inline int calculate_order(unsigned int size)
max_objects = order_objects(slub_max_order, size);
min_objects = min(min_objects, max_objects);
- while (min_objects > 1) {
+ page_frac = ((PAGE_SIZE/PAGE_SIZE_4K) == 1) ? 0 : PAGE_SIZE/PAGE_SIZE_4K;
+
+ while (min_objects >= 1) {
unsigned int fraction;
- fraction = 16;
+ fraction = 16 + page_frac;
while (fraction >= 4) {
order = calc_slab_order(size, min_objects,
slub_max_order, fraction);
@@ -4159,14 +4162,6 @@ static inline int calculate_order(unsigned int size)
min_objects--;
}
- /*
- * We were unable to place multiple objects in a slab. Now
- * lets see if we can place a single object there.
- */
- order = calc_slab_order(size, 1, slub_max_order, 1);
- if (order <= slub_max_order)
- return order;
-
/*
* Doh this slab cannot be placed using slub_max_order.
*/
In the current implementation of the slub memory allocator, the slab order selection process follows these criteria: 1) Determine the minimum order required to serve the minimum number of objects (min_objects). This calculation is based on the formula (order = min_objects * object_size / PAGE_SIZE). 2) If the minimum order is greater than the maximum allowed order (slub_max_order), set slub_max_order as the order for this slab. 3) If the minimum order is less than the slub_max_order, iterate through a loop from minimum order to slub_max_order and check if the condition (rem <= slab_size / fract_leftover) holds true. Here, slab_size is calculated as (PAGE_SIZE << order), rem is (slab_size % object_size), and fract_leftover can have values of 16, 8, or 4. If the condition is true, select that order for the slab. However, in point 3, when calculating the fraction left over, it can result in a large range of values (like 1 Kb to 256 bytes on 4K page size & 4 Kb to 16 Kb on 64K page size with order 0 and goes on increasing with higher order) when compared to the remainder (rem). This can lead to the selection of an order that results in more memory wastage. To mitigate such wastage, we have modified point 3 as follows: To adjust the value of fract_leftover based on the page size, while retaining the current value as the default for a 4K page size. Test results are as follows: 1) On 160 CPUs with 64K Page size +-----------------+----------------+----------------+ | Total wastage in slub memory | +-----------------+----------------+----------------+ | | After Boot |After Hackbench | | Normal | 932 Kb | 1812 Kb | | With Patch | 729 Kb | 1636 Kb | | Wastage reduce | ~22% | ~10% | +-----------------+----------------+----------------+ +-----------------+----------------+----------------+ | Total slub memory | +-----------------+----------------+----------------+ | | After Boot | After Hackbench| | Normal | 1855296 | 2944576 | | With Patch | 1544576 | 2692032 | | Memory reduce | ~17% | ~9% | +-----------------+----------------+----------------+ hackbench-process-sockets +-------+-----+----------+----------+-----------+ | Amean | 1 | 1.2727 | 1.2450 | ( 2.22%) | | Amean | 4 | 1.6063 | 1.5810 | ( 1.60%) | | Amean | 7 | 2.4190 | 2.3983 | ( 0.86%) | | Amean | 12 | 3.9730 | 3.9347 | ( 0.97%) | | Amean | 21 | 6.9823 | 6.8957 | ( 1.26%) | | Amean | 30 | 10.1867 | 10.0600 | ( 1.26%) | | Amean | 48 | 16.7490 | 16.4853 | ( 1.60%) | | Amean | 79 | 28.1870 | 27.8673 | ( 1.15%) | | Amean | 110 | 39.8363 | 39.3793 | ( 1.16%) | | Amean | 141 | 51.5277 | 51.4907 | ( 0.07%) | | Amean | 172 | 62.9700 | 62.7300 | ( 0.38%) | | Amean | 203 | 74.5037 | 74.0630 | ( 0.59%) | | Amean | 234 | 85.6560 | 85.3587 | ( 0.35%) | | Amean | 265 | 96.9883 | 96.3770 | ( 0.63%) | | Amean | 296 | 108.6893 | 108.0870 | ( 0.56%) | +-------+-----+----------+----------+-----------+ 2) On 16 CPUs with 64K Page size +----------------+----------------+----------------+ | Total wastage in slub memory | +----------------+----------------+----------------+ | | After Boot | After Hackbench| | Normal | 273 Kb | 544 Kb | | With Patch | 260 Kb | 500 Kb | | Wastage reduce | ~5% | ~9% | +----------------+----------------+----------------+ +-----------------+----------------+----------------+ | Total slub memory | +-----------------+----------------+----------------+ | | After Boot | After Hackbench| | Normal | 275840 | 412480 | | With Patch | 272768 | 406208 | | Memory reduce | ~1% | ~2% | +-----------------+----------------+----------------+ hackbench-process-sockets +-------+----+---------+---------+-----------+ | Amean | 1 | 0.9513 | 0.9250 | ( 2.77%) | | Amean | 4 | 2.9630 | 2.9570 | ( 0.20%) | | Amean | 7 | 5.1780 | 5.1763 | ( 0.03%) | | Amean | 12 | 8.8833 | 8.8817 | ( 0.02%) | | Amean | 21 | 15.7577 | 15.6883 | ( 0.44%) | | Amean | 30 | 22.2063 | 22.2843 | ( -0.35%) | | Amean | 48 | 36.0587 | 36.1390 | ( -0.22%) | | Amean | 64 | 49.7803 | 49.3457 | ( 0.87%) | +-------+----+---------+---------+-----------+ Signed-off-by: Jay Patel <jaypatel@linux.ibm.com> --- Changes from V2 1) removed all page order selection logic for slab cache base on wastage. 2) Increasing fraction size base on page size (keeping current value as default to 4K page) Changes from V1 1) If min_objects * object_size > PAGE_ALLOC_COSTLY_ORDER, then it will return with PAGE_ALLOC_COSTLY_ORDER. 2) Similarly, if min_objects * object_size < PAGE_SIZE, then it will return with slub_min_order. 3) Additionally, I changed slub_max_order to 2. There is no specific reason for using the value 2, but it provided the best results in terms of performance without any noticeable impact. arch/powerpc/include/asm/page.h | 2 ++ mm/slub.c | 15 +++++---------- 2 files changed, 7 insertions(+), 10 deletions(-)