@@ -1340,8 +1340,17 @@ struct task_struct {
struct tlbflush_unmap_batch tlb_ubc;
struct tlbflush_unmap_batch tlb_ubc_ro;
+ struct tlbflush_unmap_batch tlb_ubc_luf;
unsigned short int ugen;
+#if defined(CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH)
+ /*
+ * whether all the mappings of a folio during unmap are read-only
+ * so that luf can work on the folio
+ */
+ bool can_luf;
+#endif
+
/* Cache last used pipe for splice(): */
struct pipe_inode_info *splice_pipe;
@@ -1517,6 +1517,38 @@ void workingset_update_node(struct xa_node *node);
extern struct list_lru shadow_nodes;
#if defined(CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH)
+unsigned short int try_to_unmap_luf(void);
+void check_luf_flush(unsigned short int ugen);
+void luf_flush(void);
+
+/*
+ * Reset the indicator indicating there are no writable mappings at the
+ * beginning of every rmap traverse for unmap. luf can work only when
+ * all the mappings are read-only.
+ */
+static inline void can_luf_init(void)
+{
+ current->can_luf = true;
+}
+
+/*
+ * Mark the folio is not applicable to luf once it found a writble or
+ * dirty pte during rmap traverse for unmap.
+ */
+static inline void can_luf_fail(void)
+{
+ current->can_luf = false;
+}
+
+/*
+ * Check if all the mappings are read-only and read-only mappings even
+ * exist.
+ */
+static inline bool can_luf_test(void)
+{
+ return current->can_luf && current->tlb_ubc_ro.flush_required;
+}
+
static inline unsigned short int ugen_latest(unsigned short int a, unsigned short int b)
{
if (!a || !b)
@@ -1546,10 +1578,7 @@ static inline unsigned short int hand_over_task_ugen(void)
static inline void check_flush_task_ugen(void)
{
- /*
- * XXX: luf mechanism will handle this. For now, do nothing but
- * reset current's ugen to finalize this turn.
- */
+ check_luf_flush(current->ugen);
current->ugen = 0;
}
@@ -1578,6 +1607,12 @@ static inline bool can_luf_folio(struct folio *f)
return can_luf;
}
#else /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
+static inline unsigned short int try_to_unmap_luf(void) { return 0; }
+static inline void check_luf_flush(unsigned short int ugen) {}
+static inline void luf_flush(void) {}
+static inline void can_luf_init(void) {}
+static inline void can_luf_fail(void) {}
+static inline bool can_luf_test(void) { return false; }
static inline unsigned short int ugen_latest(unsigned short int a, unsigned short int b) { return 0; }
static inline void update_task_ugen(unsigned short int ugen) {}
static inline unsigned short int hand_over_task_ugen(void) { return 0; }
@@ -3617,6 +3617,14 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf)
if (vmf->page)
folio = page_folio(vmf->page);
+ /*
+ * The folio may or may not be one that is under luf's control
+ * and might be about to change its permission to writable.
+ * Conservatively give up deferring tlb flush just in case.
+ */
+ if (folio)
+ luf_flush();
+
/*
* Shared mapping: we are guaranteed to have VM_WRITE and
* FAULT_FLAG_WRITE set at this point.
@@ -1271,6 +1271,14 @@ unsigned long do_mmap(struct file *file, unsigned long addr,
pkey = 0;
}
+ /*
+ * This mmap may or may not be mapping to ones that is under
+ * luf's control. However, conservatively give up deferring tlb
+ * flush just in case.
+ */
+ if (prot & PROT_WRITE)
+ luf_flush();
+
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
@@ -635,6 +635,270 @@ struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
}
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
+static struct tlbflush_unmap_batch luf_ubc;
+static DEFINE_SPINLOCK(luf_lock);
+
+/*
+ * Don't be zero to distinguish from invalid ugen, 0.
+ */
+static unsigned short int ugen_next(unsigned short int a)
+{
+ return a + 1 ?: a + 2;
+}
+
+static bool ugen_before(unsigned short int a, unsigned short int b)
+{
+ return (short int)(a - b) < 0;
+}
+
+/*
+ * Need to synchronize between tlb flush and managing pending CPUs in
+ * luf_ubc. Take a look at the following scenario, where CPU0 is in
+ * try_to_unmap_flush() and CPU1 is in migrate_pages_batch():
+ *
+ * CPU0 CPU1
+ * ---- ----
+ * tlb flush
+ * unmap folios (needing tlb flush)
+ * add pending CPUs to luf_ubc
+ * <-- not performed tlb flush needed by
+ * the unmap above yet but the request
+ * will be cleared by CPU0 shortly. bug!
+ * clear the CPUs from luf_ubc
+ *
+ * The pending CPUs added in CPU1 should not be cleared from luf_ubc
+ * in CPU0 because the tlb flush for luf_ubc added in CPU1 has not
+ * been performed this turn. To avoid this, using 'on_flushing'
+ * variable, prevent adding pending CPUs to luf_ubc and give up luf
+ * mechanism if someone is in the middle of tlb flush, like:
+ *
+ * CPU0 CPU1
+ * ---- ----
+ * on_flushing++
+ * tlb flush
+ * unmap folios (needing tlb flush)
+ * if on_flushing == 0:
+ * add pending CPUs to luf_ubc
+ * else: <-- hit
+ * give up luf mechanism
+ * clear the CPUs from luf_ubc
+ * on_flushing--
+ *
+ * Only the following case would be allowed for luf mechanism to work:
+ *
+ * CPU0 CPU1
+ * ---- ----
+ * unmap folios (needing tlb flush)
+ * if on_flushing == 0: <-- hit
+ * add pending CPUs to luf_ubc
+ * else:
+ * give up luf mechanism
+ * on_flushing++
+ * tlb flush
+ * clear the CPUs from luf_ubc
+ * on_flushing--
+ */
+static int on_flushing;
+
+/*
+ * When more than one thread enter check_luf_flush() at the same
+ * time, each should wait for the request on progress to be done to
+ * avoid the following scenario, where the both CPUs are in
+ * check_luf_flush():
+ *
+ * CPU0 CPU1
+ * ---- ----
+ * if !luf_ubc.flush_required:
+ * return
+ * luf_ubc.flush_required = false
+ * if !luf_ubc.flush_requied: <-- hit
+ * return <-- not performed tlb flush
+ * needed yet but return. bug!
+ * luf_ubc.flush_required = false
+ * try_to_unmap_flush()
+ * finalize
+ * try_to_unmap_flush() <-- performs tlb flush needed
+ * finalize
+ *
+ * So it should be handled:
+ *
+ * CPU0 CPU1
+ * ---- ----
+ * atomically execute {
+ * if luf_on_flushing:
+ * wait for the completion
+ * return
+ * if !luf_ubc.flush_required:
+ * return
+ * luf_ubc.flush_required = false
+ * luf_on_flushing = true
+ * }
+ * atomically execute {
+ * if luf_on_flushing: <-- hit
+ * wait for the completion
+ * return <-- tlb flush needed is done
+ * if !luf_ubc.flush_requied:
+ * return
+ * luf_ubc.flush_required = false
+ * luf_on_flushing = true
+ * }
+ *
+ * try_to_unmap_flush()
+ * luf_on_flushing = false
+ * finalize
+ * try_to_unmap_flush() <-- performs tlb flush needed
+ * luf_on_flushing = false
+ * finalize
+ */
+static bool luf_on_flushing;
+
+/*
+ * Generation number for the current request of deferred tlb flush.
+ */
+static unsigned short int luf_gen;
+
+/*
+ * Generation number for the next request.
+ */
+static unsigned short int luf_gen_next = 1;
+
+/*
+ * Generation number for the latest request handled.
+ */
+static unsigned short int luf_gen_done;
+
+unsigned short int try_to_unmap_luf(void)
+{
+ struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
+ struct tlbflush_unmap_batch *tlb_ubc_luf = ¤t->tlb_ubc_luf;
+ unsigned long flags;
+ unsigned short int ugen;
+
+ if (!spin_trylock_irqsave(&luf_lock, flags)) {
+ /*
+ * Give up luf mechanism. Just let tlb flush needed
+ * handled by try_to_unmap_flush() at the caller side.
+ */
+ fold_ubc(tlb_ubc, tlb_ubc_luf);
+ return 0;
+ }
+
+ if (on_flushing || luf_on_flushing) {
+ spin_unlock_irqrestore(&luf_lock, flags);
+
+ /*
+ * Give up luf mechanism. Just let tlb flush needed
+ * handled by try_to_unmap_flush() at the caller side.
+ */
+ fold_ubc(tlb_ubc, tlb_ubc_luf);
+ return 0;
+ }
+
+ fold_ubc(&luf_ubc, tlb_ubc_luf);
+ ugen = luf_gen = luf_gen_next;
+ spin_unlock_irqrestore(&luf_lock, flags);
+
+ return ugen;
+}
+
+static void rmap_flush_start(void)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&luf_lock, flags);
+ on_flushing++;
+ spin_unlock_irqrestore(&luf_lock, flags);
+}
+
+static void rmap_flush_end(struct tlbflush_unmap_batch *batch)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&luf_lock, flags);
+ if (arch_tlbbatch_done(&luf_ubc.arch, &batch->arch)) {
+ luf_ubc.flush_required = false;
+ luf_ubc.writable = false;
+ }
+ on_flushing--;
+ spin_unlock_irqrestore(&luf_lock, flags);
+}
+
+/*
+ * It must be guaranteed to have completed tlb flush requested on return.
+ */
+void check_luf_flush(unsigned short int ugen)
+{
+ struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
+ unsigned long flags;
+
+ /*
+ * Nothing has been requested. We are done.
+ */
+ if (!ugen)
+ return;
+retry:
+ /*
+ * We can see a larger value than or equal to luf_gen_done,
+ * which means the tlb flush we need has been done.
+ */
+ if (!ugen_before(READ_ONCE(luf_gen_done), ugen))
+ return;
+
+ spin_lock_irqsave(&luf_lock, flags);
+
+ /*
+ * With luf_lock held, we might read luf_gen_done updated.
+ */
+ if (ugen_next(luf_gen_done) != ugen) {
+ spin_unlock_irqrestore(&luf_lock, flags);
+ return;
+ }
+
+ /*
+ * Others are already working for us.
+ */
+ if (luf_on_flushing) {
+ spin_unlock_irqrestore(&luf_lock, flags);
+ goto retry;
+ }
+
+ if (!luf_ubc.flush_required) {
+ spin_unlock_irqrestore(&luf_lock, flags);
+ return;
+ }
+
+ fold_ubc(tlb_ubc, &luf_ubc);
+ luf_gen_next = ugen_next(luf_gen);
+ luf_on_flushing = true;
+ spin_unlock_irqrestore(&luf_lock, flags);
+
+ try_to_unmap_flush();
+
+ spin_lock_irqsave(&luf_lock, flags);
+ luf_on_flushing = false;
+
+ /*
+ * luf_gen_done can be read by another with luf_lock not
+ * held so use WRITE_ONCE() to prevent tearing.
+ */
+ WRITE_ONCE(luf_gen_done, ugen);
+ spin_unlock_irqrestore(&luf_lock, flags);
+}
+
+void luf_flush(void)
+{
+ unsigned long flags;
+ unsigned short int ugen;
+
+ /*
+ * Obtain the latest ugen number.
+ */
+ spin_lock_irqsave(&luf_lock, flags);
+ ugen = luf_gen;
+ spin_unlock_irqrestore(&luf_lock, flags);
+
+ check_luf_flush(ugen);
+}
void fold_ubc(struct tlbflush_unmap_batch *dst,
struct tlbflush_unmap_batch *src)
@@ -666,13 +930,15 @@ void fold_ubc(struct tlbflush_unmap_batch *dst,
void try_to_unmap_flush(void)
{
struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
- struct tlbflush_unmap_batch *tlb_ubc_ro = ¤t->tlb_ubc_ro;
+ struct tlbflush_unmap_batch *tlb_ubc_luf = ¤t->tlb_ubc_luf;
- fold_ubc(tlb_ubc, tlb_ubc_ro);
+ fold_ubc(tlb_ubc, tlb_ubc_luf);
if (!tlb_ubc->flush_required)
return;
+ rmap_flush_start();
arch_tlbbatch_flush(&tlb_ubc->arch);
+ rmap_flush_end(tlb_ubc);
arch_tlbbatch_clear(&tlb_ubc->arch);
tlb_ubc->flush_required = false;
tlb_ubc->writable = false;
@@ -682,9 +948,9 @@ void try_to_unmap_flush(void)
void try_to_unmap_flush_dirty(void)
{
struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
- struct tlbflush_unmap_batch *tlb_ubc_ro = ¤t->tlb_ubc_ro;
+ struct tlbflush_unmap_batch *tlb_ubc_luf = ¤t->tlb_ubc_luf;
- if (tlb_ubc->writable || tlb_ubc_ro->writable)
+ if (tlb_ubc->writable || tlb_ubc_luf->writable)
try_to_unmap_flush();
}
@@ -708,9 +974,15 @@ static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
if (!pte_accessible(mm, pteval))
return;
- if (pte_write(pteval))
+ if (pte_write(pteval)) {
tlb_ubc = ¤t->tlb_ubc;
- else
+
+ /*
+ * luf cannot work with the folio once it found a
+ * writable or dirty mapping on it.
+ */
+ can_luf_fail();
+ } else
tlb_ubc = ¤t->tlb_ubc_ro;
arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
@@ -1976,11 +2248,23 @@ void try_to_unmap(struct folio *folio, enum ttu_flags flags)
.done = folio_not_mapped,
.anon_lock = folio_lock_anon_vma_read,
};
+ struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
+ struct tlbflush_unmap_batch *tlb_ubc_ro = ¤t->tlb_ubc_ro;
+ struct tlbflush_unmap_batch *tlb_ubc_luf = ¤t->tlb_ubc_luf;
+ bool can_luf;
+
+ can_luf_init();
if (flags & TTU_RMAP_LOCKED)
rmap_walk_locked(folio, &rwc);
else
rmap_walk(folio, &rwc);
+
+ can_luf = can_luf_folio(folio) && can_luf_test();
+ if (can_luf)
+ fold_ubc(tlb_ubc_luf, tlb_ubc_ro);
+ else
+ fold_ubc(tlb_ubc, tlb_ubc_ro);
}
/*
@@ -2325,6 +2609,10 @@ void try_to_migrate(struct folio *folio, enum ttu_flags flags)
.done = folio_not_mapped,
.anon_lock = folio_lock_anon_vma_read,
};
+ struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
+ struct tlbflush_unmap_batch *tlb_ubc_ro = ¤t->tlb_ubc_ro;
+ struct tlbflush_unmap_batch *tlb_ubc_luf = ¤t->tlb_ubc_luf;
+ bool can_luf;
/*
* Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
@@ -2349,10 +2637,18 @@ void try_to_migrate(struct folio *folio, enum ttu_flags flags)
if (!folio_test_ksm(folio) && folio_test_anon(folio))
rwc.invalid_vma = invalid_migration_vma;
+ can_luf_init();
+
if (flags & TTU_RMAP_LOCKED)
rmap_walk_locked(folio, &rwc);
else
rmap_walk(folio, &rwc);
+
+ can_luf = can_luf_folio(folio) && can_luf_test();
+ if (can_luf)
+ fold_ubc(tlb_ubc_luf, tlb_ubc_ro);
+ else
+ fold_ubc(tlb_ubc, tlb_ubc_ro);
}
#ifdef CONFIG_DEVICE_PRIVATE
A new mechanism, LUF(Lazy Unmap Flush), defers tlb flush until folios that have been unmapped and freed, eventually get allocated again. It's safe for folios that had been mapped read-only and were unmapped, since the contents of the folios don't change while staying in pcp or buddy so we can still read the data through the stale tlb entries. tlb flush can be defered when folios get unmapped as long as it guarantees to perform tlb flush needed, before the folios actually become used, of course, only if all the corresponding ptes don't have write permission. Otherwise, the system will get messed up. To achieve that: 1. For the folios that map only to non-writable tlb entries, prevent tlb flush during unmapping but perform it just before the folios actually become used, out of buddy or pcp. 2. When any non-writable ptes change to writable e.g. through fault handler, give up luf mechanism and perform tlb flush required right away. 3. When a writable mapping is created e.g. through mmap(), give up luf mechanism and perform tlb flush required right away. No matter what type of workload is used for performance evaluation, the result would be positive thanks to the unconditional reduction of tlb flushes, tlb misses and interrupts. For the test, I picked up one of the most popular and heavy workload, llama.cpp that is a LLM(Large Language Model) inference engine. The result would depend on memory latency and how often reclaim runs, which implies tlb miss overhead and how many times unmapping happens. In my system, the result shows: 1. tlb flushes are reduced about 95%. 2. tlb misses(itlb) are reduced about 80%. 3. tlb misses(dtlb store) are reduced about 57%. 4. tlb misses(dtlb load) are reduced about 24%. 5. tlb shootdown interrupts are reduced about 95%. 6. The test program runtime is reduced about 5%. The test environment and the result is like: Machine: bare metal, x86_64, Intel(R) Xeon(R) Gold 6430 CPU: 1 socket 64 core with hyper thread on Numa: 2 nodes (64 CPUs DRAM 42GB, no CPUs CXL expander 98GB) Config: swap off, numa balancing tiering on, demotion enabled The test set: llama.cpp/main -m $(70G_model1) -p "who are you?" -s 1 -t 15 -n 20 & llama.cpp/main -m $(70G_model2) -p "who are you?" -s 1 -t 15 -n 20 & llama.cpp/main -m $(70G_model3) -p "who are you?" -s 1 -t 15 -n 20 & wait where -t: nr of threads, -s: seed used to make the runtime stable, -n: nr of tokens that determines the runtime, -p: prompt to ask, -m: LLM model to use. Run the test set 10 times successively with caches dropped every run via 'echo 3 > /proc/sys/vm/drop_caches'. Each inference prints its runtime at the end of each. 1. Runtime from the output of llama.cpp: BEFORE ------ llama_print_timings: total time = 1002461.95 ms / 24 tokens llama_print_timings: total time = 1044978.38 ms / 24 tokens llama_print_timings: total time = 1000653.09 ms / 24 tokens llama_print_timings: total time = 1047104.80 ms / 24 tokens llama_print_timings: total time = 1069430.36 ms / 24 tokens llama_print_timings: total time = 1068201.16 ms / 24 tokens llama_print_timings: total time = 1078092.59 ms / 24 tokens llama_print_timings: total time = 1073200.45 ms / 24 tokens llama_print_timings: total time = 1067136.00 ms / 24 tokens llama_print_timings: total time = 1076442.56 ms / 24 tokens llama_print_timings: total time = 1004142.64 ms / 24 tokens llama_print_timings: total time = 1042942.65 ms / 24 tokens llama_print_timings: total time = 999933.76 ms / 24 tokens llama_print_timings: total time = 1046548.83 ms / 24 tokens llama_print_timings: total time = 1068671.48 ms / 24 tokens llama_print_timings: total time = 1068285.76 ms / 24 tokens llama_print_timings: total time = 1077789.63 ms / 24 tokens llama_print_timings: total time = 1071558.93 ms / 24 tokens llama_print_timings: total time = 1066181.55 ms / 24 tokens llama_print_timings: total time = 1076767.53 ms / 24 tokens llama_print_timings: total time = 1004065.63 ms / 24 tokens llama_print_timings: total time = 1044522.13 ms / 24 tokens llama_print_timings: total time = 999725.33 ms / 24 tokens llama_print_timings: total time = 1047510.77 ms / 24 tokens llama_print_timings: total time = 1068010.27 ms / 24 tokens llama_print_timings: total time = 1068999.31 ms / 24 tokens llama_print_timings: total time = 1077648.05 ms / 24 tokens llama_print_timings: total time = 1071378.96 ms / 24 tokens llama_print_timings: total time = 1066326.32 ms / 24 tokens llama_print_timings: total time = 1077088.92 ms / 24 tokens AFTER ----- llama_print_timings: total time = 988522.03 ms / 24 tokens llama_print_timings: total time = 997204.52 ms / 24 tokens llama_print_timings: total time = 996605.86 ms / 24 tokens llama_print_timings: total time = 991985.50 ms / 24 tokens llama_print_timings: total time = 1035143.31 ms / 24 tokens llama_print_timings: total time = 993660.18 ms / 24 tokens llama_print_timings: total time = 983082.14 ms / 24 tokens llama_print_timings: total time = 990431.36 ms / 24 tokens llama_print_timings: total time = 992707.09 ms / 24 tokens llama_print_timings: total time = 992673.27 ms / 24 tokens llama_print_timings: total time = 989285.43 ms / 24 tokens llama_print_timings: total time = 996710.06 ms / 24 tokens llama_print_timings: total time = 996534.64 ms / 24 tokens llama_print_timings: total time = 991344.17 ms / 24 tokens llama_print_timings: total time = 1035210.84 ms / 24 tokens llama_print_timings: total time = 994714.13 ms / 24 tokens llama_print_timings: total time = 984184.15 ms / 24 tokens llama_print_timings: total time = 990909.45 ms / 24 tokens llama_print_timings: total time = 991881.48 ms / 24 tokens llama_print_timings: total time = 993918.03 ms / 24 tokens llama_print_timings: total time = 990061.34 ms / 24 tokens llama_print_timings: total time = 998076.69 ms / 24 tokens llama_print_timings: total time = 997082.59 ms / 24 tokens llama_print_timings: total time = 990677.58 ms / 24 tokens llama_print_timings: total time = 1036054.94 ms / 24 tokens llama_print_timings: total time = 994125.93 ms / 24 tokens llama_print_timings: total time = 982467.01 ms / 24 tokens llama_print_timings: total time = 990191.60 ms / 24 tokens llama_print_timings: total time = 993319.24 ms / 24 tokens llama_print_timings: total time = 992540.57 ms / 24 tokens 2. tlb shootdowns from 'cat /proc/interrupts': BEFORE ------ TLB: 125553646 141418810 161932620 176853972 186655697 190399283 192143823 196414038 192872439 193313658 193395617 192521416 190788161 195067598 198016061 193607347 194293972 190786732 191545637 194856822 191801931 189634535 190399803 196365922 195268398 190115840 188050050 193194908 195317617 190820190 190164820 185556071 226797214 229592631 216112464 209909495 205575979 205950252 204948111 197999795 198892232 205287952 199344631 195015158 195869844 198858745 195692876 200961904 203463252 205921722 199850838 206145986 199613202 199961345 200129577 203020521 207873649 203697671 197093386 204243803 205993323 200934664 204193128 194435376 TLB shootdowns AFTER ----- TLB: 5648092 6610142 7032849 7882308 8088518 8352310 8656536 8705136 8647426 8905583 8985408 8704522 8884344 9026261 8929974 8869066 8877575 8810096 8770984 8754503 8801694 8865925 8787524 8656432 8755912 8682034 8773935 8832925 8797997 8515777 8481240 8891258 10595243 10285973 9756935 9573681 9398968 9069244 9242984 8899009 9310690 9029095 9069758 9105825 9092703 9270202 9460287 9258546 9180415 9232723 9270611 9175020 9490420 9360316 9420818 9057663 9525631 9310152 9152242 8654483 9181804 9050847 8919916 8883856 TLB shootdowns 3. tlb numbers from 'perf stat' per test set: BEFORE ------ 3163679332 dTLB-load-misses 2017751856 dTLB-store-misses 327092903 iTLB-load-misses 1357543886 tlb:tlb_flush AFTER ----- 2394694609 dTLB-load-misses 861144167 dTLB-store-misses 64055579 iTLB-load-misses 69175002 tlb:tlb_flush Signed-off-by: Byungchul Park <byungchul@sk.com> --- include/linux/sched.h | 9 ++ mm/internal.h | 43 +++++- mm/memory.c | 8 ++ mm/mmap.c | 8 ++ mm/rmap.c | 308 +++++++++++++++++++++++++++++++++++++++++- 5 files changed, 366 insertions(+), 10 deletions(-)