Message ID | 20240911225449.152928-14-dakr@kernel.org (mailing list archive) |
---|---|
State | New |
Headers | show |
Series | Generic `Allocator` support for Rust | expand |
On 12.09.24 00:52, Danilo Krummrich wrote: > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..631a44e19f35 > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,638 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{ > + allocator::{KVmalloc, Kmalloc, Vmalloc}, > + AllocError, Allocator, Box, Flags, > +}; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + ptr::NonNull, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`Vec`] containing the arguments. I would change this to [`KVec`]. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + $crate::alloc::KVec::new() > + ); > + ($elem:expr; $n:expr) => ( > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + ); > + ($($x:expr),+ $(,)?) => ( > + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), > + Err(e) => Err(e), > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. Can you turn these into links? > +/// > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. Ditto. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used > +/// to allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for > +/// zero-sized types, is a dangling, well aligned pointer. > +/// > +/// - `self.len` always represents the exact number of elements stored in the vector. > +/// > +/// - `self.cap` represents the absolute number of elements that can be stored within the vector > +/// without re-allocation. However, it is legal for the backing buffer to be larger than > +/// `size_of<T>` times the capacity. > +/// > +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer > +/// was allocated with (and must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: NonNull<T>, > + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. > + /// > + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of > + /// elements we can still store without reallocating. > + /// > + /// # Invariants > + /// > + /// `cap` must be in the `0..=isize::MAX` range. > + cap: usize, > + len: usize, > + _p: PhantomData<A>, > +} [...] > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + Vec::reserve(self, 1, flags)?; > + > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > + > + // SAFETY: > + // - `ptr` is properly aligned and valid for writes. > + unsafe { core::ptr::write(ptr, v) }; Why not use `self.spare_capacity_mut()[0].write(v);`? If you want to avoid the bounds check, you can do let first = self.spare_capacity_mut().first(); // SAFETY: the call to `Vec::reserve` above ensures that `spare_capacity_mut()` is non-empty. unsafe { first.unwrap_unchecked() }.write(v); > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + Self::reserve(&mut v, capacity, flags)?; > + > + Ok(v) > + } > + > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40]); > + /// > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > + where > + T: Clone, This method can be moved into the other impl block below, it already has the `T: Clone` bound. > + { > + self.reserve(other.len(), flags)?; > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > + slot.write(item.clone()); > + } > + > + // SAFETY: > + // - `other.len()` spare entries have just been initialized, so it is safe to increase > + // the length by the same number. > + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` > + // call. > + unsafe { self.set_len(self.len() + other.len()) }; > + Ok(()) > + } > + > + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + /// > + /// # Safety > + /// > + /// If `T` is a ZST: > + /// > + /// - `ptr` must be a dangling, well aligned pointer. > + /// > + /// Otherwise: > + /// > + /// - `ptr` must have been allocated with the allocator `A`. > + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. > + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. > + /// bytes. > + /// - The allocated size in bytes must not be larger than `isize::MAX`. > + /// - `length` must be less than or equal to `capacity`. > + /// - The first `length` elements must be initialized values of type `T`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let cap = if Self::is_zst() { 0 } else { capacity }; > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { NonNull::new_unchecked(ptr) }, > + cap, > + len: length, > + _p: PhantomData::<A>, > + } Would be nice to have `debug_assert!(length <= capacity)` here. But feel free to make that a good-first-issue instead of including it in the next version. (there are probably more asserts elsewhere) > + } > + > + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. > + /// > + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation > + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the > + /// elements and free the allocation, if any. > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let mut me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } [...] > +macro_rules! impl_slice_eq { > + ([$($vars:tt)*] $lhs:ty, $rhs:ty) => { You could wrap the entire pattern in "$()*", same for the entire body and then... > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > + where > + T: PartialEq<U>, > + { > + #[inline] > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > + } > + } > +} > + > +impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > +impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > +impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } ...we could have a single `impl_slice_eq` invocation here: impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> [A: Allocator] Vec<T, A>, &[U] [A: Allocator] Vec<T, A>, &mut [U] [A: Allocator] &[T], Vec<U, A> [A: Allocator] &mut [T], Vec<U, A> [A: Allocator] Vec<T, A>, [U] [A: Allocator] [T], Vec<U, A> [A: Allocator, const N: usize] Vec<T, A>, [U; N] [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } Not a huge improvement, but I think it makes it a bit nicer to read. --- Cheers, Benno > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > index d5f2fe42d093..80223cdaa485 100644 > --- a/rust/kernel/prelude.rs > +++ b/rust/kernel/prelude.rs > @@ -14,7 +14,7 @@ > #[doc(no_inline)] > pub use core::pin::Pin; > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > #[doc(no_inline)] > pub use alloc::vec::Vec; > -- > 2.46.0 >
On Thu, Sep 26, 2024 at 01:47:04PM +0000, Benno Lossin wrote: > On 12.09.24 00:52, Danilo Krummrich wrote: > > + /// Appends an element to the back of the [`Vec`] instance. > > + /// > > + /// # Examples > > + /// > > + /// ``` > > + /// let mut v = KVec::new(); > > + /// v.push(1, GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1]); > > + /// > > + /// v.push(2, GFP_KERNEL)?; > > + /// assert_eq!(&v, &[1, 2]); > > + /// # Ok::<(), Error>(()) > > + /// ``` > > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > > + Vec::reserve(self, 1, flags)?; > > + > > + // SAFETY: > > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > > + // guaranteed to be part of the same allocated object. > > + // - `self.len` can not overflow `isize`. > > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > > + > > + // SAFETY: > > + // - `ptr` is properly aligned and valid for writes. > > + unsafe { core::ptr::write(ptr, v) }; > > Why not use `self.spare_capacity_mut()[0].write(v);`? Before v7 I did exactly that, but in v6 you suggested to use the raw pointer instead to avoid the bounds check. > > If you want to avoid the bounds check, you can do > > let first = self.spare_capacity_mut().first(); > // SAFETY: the call to `Vec::reserve` above ensures that `spare_capacity_mut()` is non-empty. > unsafe { first.unwrap_unchecked() }.write(v); `first` does a similar check to create the `Option<&T>`, right?. I'd rather keep the raw pointer access as suggested in v6.
On 28.09.24 14:43, Danilo Krummrich wrote: > On Thu, Sep 26, 2024 at 01:47:04PM +0000, Benno Lossin wrote: >> On 12.09.24 00:52, Danilo Krummrich wrote: >>> + /// Appends an element to the back of the [`Vec`] instance. >>> + /// >>> + /// # Examples >>> + /// >>> + /// ``` >>> + /// let mut v = KVec::new(); >>> + /// v.push(1, GFP_KERNEL)?; >>> + /// assert_eq!(&v, &[1]); >>> + /// >>> + /// v.push(2, GFP_KERNEL)?; >>> + /// assert_eq!(&v, &[1, 2]); >>> + /// # Ok::<(), Error>(()) >>> + /// ``` >>> + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { >>> + Vec::reserve(self, 1, flags)?; >>> + >>> + // SAFETY: >>> + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is >>> + // guaranteed to be part of the same allocated object. >>> + // - `self.len` can not overflow `isize`. >>> + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; >>> + >>> + // SAFETY: >>> + // - `ptr` is properly aligned and valid for writes. >>> + unsafe { core::ptr::write(ptr, v) }; >> >> Why not use `self.spare_capacity_mut()[0].write(v);`? > > Before v7 I did exactly that, but in v6 you suggested to use the raw pointer > instead to avoid the bounds check. Ah I see... Would be pretty useful for me to have my previous comments easily accessible, I don't usually look at the previous thread. Is anyone aware of some tools for that? >> If you want to avoid the bounds check, you can do >> >> let first = self.spare_capacity_mut().first(); >> // SAFETY: the call to `Vec::reserve` above ensures that `spare_capacity_mut()` is non-empty. >> unsafe { first.unwrap_unchecked() }.write(v); > > `first` does a similar check to create the `Option<&T>`, right?. I'd rather keep > the raw pointer access as suggested in v6. It does a check, but the optimizer will get rid of it if you use `unwrap_unchecked` [1]. But feel free to leave it as-is. [1]: https://godbolt.org/z/zYbMTo86M --- Cheers, Benno
On Thu, 12 Sep 2024 00:52:49 +0200 Danilo Krummrich <dakr@kernel.org> wrote: > `Vec` provides a contiguous growable array type with contents allocated > with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). > > In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers > the kernel's GFP flags for all appropriate functions, always reports > allocation failures through `Result<_, AllocError>` and remains > independent from unstable features. > > Signed-off-by: Danilo Krummrich <dakr@kernel.org> > --- > rust/kernel/alloc.rs | 6 + > rust/kernel/alloc/kvec.rs | 638 ++++++++++++++++++++++++++++++++++++++ > rust/kernel/prelude.rs | 2 +- > 3 files changed, 645 insertions(+), 1 deletion(-) > create mode 100644 rust/kernel/alloc/kvec.rs > > diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs > index 1d0cb6f12af9..4fb983b63d46 100644 > --- a/rust/kernel/alloc.rs > +++ b/rust/kernel/alloc.rs > @@ -5,6 +5,7 @@ > #[cfg(not(any(test, testlib)))] > pub mod allocator; > pub mod kbox; > +pub mod kvec; > pub mod vec_ext; > > #[cfg(any(test, testlib))] > @@ -18,6 +19,11 @@ > pub use self::kbox::KVBox; > pub use self::kbox::VBox; > > +pub use self::kvec::KVVec; > +pub use self::kvec::KVec; > +pub use self::kvec::VVec; > +pub use self::kvec::Vec; > + > /// Indicates an allocation error. > #[derive(Copy, Clone, PartialEq, Eq, Debug)] > pub struct AllocError; > diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs > new file mode 100644 > index 000000000000..631a44e19f35 > --- /dev/null > +++ b/rust/kernel/alloc/kvec.rs > @@ -0,0 +1,638 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Implementation of [`Vec`]. > + > +use super::{ > + allocator::{KVmalloc, Kmalloc, Vmalloc}, > + AllocError, Allocator, Box, Flags, > +}; > +use core::{ > + fmt, > + marker::PhantomData, > + mem::{ManuallyDrop, MaybeUninit}, > + ops::Deref, > + ops::DerefMut, > + ops::Index, > + ops::IndexMut, > + ptr::NonNull, > + slice, > + slice::SliceIndex, > +}; > + > +/// Create a [`Vec`] containing the arguments. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = kernel::kvec![]; > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(v, [1]); > +/// > +/// let mut v = kernel::kvec![1; 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 1, 1, 4]); > +/// > +/// let mut v = kernel::kvec![1, 2, 3]?; > +/// v.push(4, GFP_KERNEL)?; > +/// assert_eq!(v, [1, 2, 3, 4]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +#[macro_export] > +macro_rules! kvec { > + () => ( > + $crate::alloc::KVec::new() > + ); > + ($elem:expr; $n:expr) => ( > + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) > + ); > + ($($x:expr),+ $(,)?) => ( > + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { > + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), > + Err(e) => Err(e), > + } > + ); > +} > + > +/// The kernel's [`Vec`] type. > +/// > +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. > +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. > +/// > +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For > +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. > +/// > +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. > +/// > +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the > +/// capacity of the vector (the number of elements that currently fit into the vector), it's length > +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used > +/// to allocate (and free) the backing buffer. > +/// > +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts > +/// and manually modified. > +/// > +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements > +/// are added to the vector. > +/// > +/// # Invariants > +/// > +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for > +/// zero-sized types, is a dangling, well aligned pointer. > +/// > +/// - `self.len` always represents the exact number of elements stored in the vector. > +/// > +/// - `self.cap` represents the absolute number of elements that can be stored within the vector > +/// without re-allocation. However, it is legal for the backing buffer to be larger than > +/// `size_of<T>` times the capacity. > +/// > +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer > +/// was allocated with (and must be freed with). > +pub struct Vec<T, A: Allocator> { > + ptr: NonNull<T>, > + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. > + /// > + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of > + /// elements we can still store without reallocating. > + /// > + /// # Invariants > + /// > + /// `cap` must be in the `0..=isize::MAX` range. > + cap: usize, > + len: usize, > + _p: PhantomData<A>, > +} > + > +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVec<T> = Vec<T, Kmalloc>; > + > +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = VVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type VVec<T> = Vec<T, Vmalloc>; > + > +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. > +/// > +/// # Examples > +/// > +/// ``` > +/// let mut v = KVVec::new(); > +/// v.push(1, GFP_KERNEL)?; > +/// assert_eq!(&v, &[1]); > +/// > +/// # Ok::<(), Error>(()) > +/// ``` > +pub type KVVec<T> = Vec<T, KVmalloc>; > + > +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. > +unsafe impl<T, A> Send for Vec<T, A> > +where > + T: Send, > + A: Allocator, > +{ > +} > + > +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. > +unsafe impl<T, A> Sync for Vec<T, A> > +where > + T: Sync, > + A: Allocator, > +{ > +} > + > +impl<T, A> Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn is_zst() -> bool { > + core::mem::size_of::<T>() == 0 > + } > + > + /// Returns the number of elements that can be stored within the vector without allocating > + /// additional memory. > + pub fn capacity(&self) -> usize { > + if Self::is_zst() { Better to ensure everything ZST related is const to avoid putting load on optimizer. The Rust standard library defines a trait `SizedTypeProperties` and an associative const, but you can also just do: if const { Self::is_zst() } { (and change is_zst to const). You might need to add `feature(inline_const)` since it's stable in 1.79 and we have MSRV of 1.76 (the trait method doesn't need new feature gate). > + usize::MAX > + } else { > + self.cap > + } > + } > + > + /// Returns the number of elements stored within the vector. > + #[inline] > + pub fn len(&self) -> usize { > + self.len > + } > + > + /// Forcefully sets `self.len` to `new_len`. > + /// > + /// # Safety > + /// > + /// - `new_len` must be less than or equal to [`Self::capacity`]. > + /// - If `new_len` is greater than `self.len`, all elements within the interval > + /// [`self.len`,`new_len`) must be initialized. > + #[inline] > + pub unsafe fn set_len(&mut self, new_len: usize) { > + debug_assert!(new_len <= self.capacity()); > + self.len = new_len; > + } > + > + /// Returns a slice of the entire vector. > + #[inline] > + pub fn as_slice(&self) -> &[T] { > + self > + } > + > + /// Returns a mutable slice of the entire vector. > + #[inline] > + pub fn as_mut_slice(&mut self) -> &mut [T] { > + self > + } > + > + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a > + /// dangling raw pointer. > + #[inline] > + pub fn as_mut_ptr(&mut self) -> *mut T { > + self.ptr.as_ptr() > + } > + > + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw > + /// pointer. > + #[inline] > + pub fn as_ptr(&self) -> *const T { > + self.ptr.as_ptr() > + } > + > + /// Returns `true` if the vector contains no elements, `false` otherwise. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// assert!(v.is_empty()); > + /// > + /// v.push(1, GFP_KERNEL); > + /// assert!(!v.is_empty()); > + /// ``` > + #[inline] > + pub fn is_empty(&self) -> bool { > + self.len() == 0 > + } > + > + /// Creates a new, empty Vec<T, A>. > + /// > + /// This method does not allocate by itself. > + #[inline] > + pub const fn new() -> Self { > + Self { > + ptr: NonNull::dangling(), > + cap: 0, > + len: 0, > + _p: PhantomData::<A>, > + } > + } > + > + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. > + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; > + > + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated > + // and valid, but uninitialized. > + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } > + } > + > + /// Appends an element to the back of the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1]); > + /// > + /// v.push(2, GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 2]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { > + Vec::reserve(self, 1, flags)?; Not sure why this isn't `self.reserve(1, flags)?`? > + > + // SAFETY: > + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is > + // guaranteed to be part of the same allocated object. > + // - `self.len` can not overflow `isize`. > + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; > + > + // SAFETY: > + // - `ptr` is properly aligned and valid for writes. > + unsafe { core::ptr::write(ptr, v) }; > + > + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length > + // by 1. We also know that the new length is <= capacity because of the previous call to > + // `reserve` above. > + unsafe { self.set_len(self.len() + 1) }; > + Ok(()) > + } > + > + /// Creates a new [`Vec`] instance with at least the given capacity. > + /// > + /// # Examples > + /// > + /// ``` > + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; > + /// > + /// assert!(v.capacity() >= 20); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Vec::new(); > + > + Self::reserve(&mut v, capacity, flags)?; same here. > + > + Ok(v) > + } > + > + /// Pushes clones of the elements of slice into the [`Vec`] instance. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40]); > + /// > + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; > + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> > + where > + T: Clone, > + { > + self.reserve(other.len(), flags)?; > + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { > + slot.write(item.clone()); > + } > + > + // SAFETY: > + // - `other.len()` spare entries have just been initialized, so it is safe to increase > + // the length by the same number. > + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` > + // call. > + unsafe { self.set_len(self.len() + other.len()) }; > + Ok(()) > + } > + > + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = kernel::kvec![1, 2, 3]?; > + /// v.reserve(1, GFP_KERNEL)?; > + /// > + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); > + /// > + /// // SAFETY: We've just reserved memory for another element. > + /// unsafe { ptr.add(len).write(4) }; > + /// len += 1; > + /// > + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and > + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it > + /// // from the exact same raw parts. > + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; > + /// > + /// assert_eq!(v, [1, 2, 3, 4]); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + /// > + /// # Safety > + /// > + /// If `T` is a ZST: > + /// > + /// - `ptr` must be a dangling, well aligned pointer. > + /// > + /// Otherwise: > + /// > + /// - `ptr` must have been allocated with the allocator `A`. > + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. > + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. > + /// bytes. > + /// - The allocated size in bytes must not be larger than `isize::MAX`. > + /// - `length` must be less than or equal to `capacity`. > + /// - The first `length` elements must be initialized values of type `T`. > + /// > + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for > + /// `cap` and `len`. > + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { > + let cap = if Self::is_zst() { 0 } else { capacity }; > + > + Self { > + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid > + // memory allocation, allocated with `A`. > + ptr: unsafe { NonNull::new_unchecked(ptr) }, > + cap, > + len: length, > + _p: PhantomData::<A>, > + } > + } > + > + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. > + /// > + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation > + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the > + /// elements and free the allocation, if any. > + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { > + let mut me = ManuallyDrop::new(self); > + let len = me.len(); > + let capacity = me.capacity(); > + let ptr = me.as_mut_ptr(); > + (ptr, len, capacity) > + } > + > + /// Ensures that the capacity exceeds the length by at least `additional` > + /// elements. > + /// > + /// # Examples > + /// > + /// ``` > + /// let mut v = KVec::new(); > + /// v.push(1, GFP_KERNEL)?; > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let cap = v.capacity(); > + /// assert!(cap >= 10); > + /// > + /// v.reserve(10, GFP_KERNEL)?; > + /// let new_cap = v.capacity(); > + /// assert_eq!(new_cap, cap); > + /// > + /// # Ok::<(), Error>(()) > + /// ``` > + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { > + let len = self.len(); > + let cap = self.capacity(); > + > + if cap - len >= additional { > + return Ok(()); > + } > + > + if Self::is_zst() { > + // The capacity is already `usize::MAX` for ZSTs, we can't go higher. > + return Err(AllocError); > + } > + > + // We know `cap` is <= `isize::MAX` because of the type invariants of `Self`. So the > + // multiplication by two won't overflow. > + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); > + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; > + > + // We need to make sure that `ptr` is either NULL or comes from a previous call to > + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be > + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s > + // capacity to be zero if no memory has been allocated yet. > + let ptr = if cap == 0 { > + None > + } else { > + Some(self.ptr.cast()) > + }; > + > + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to > + // `A::realloc`. We also verified that the type is not a ZST. > + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; > + > + self.ptr = ptr.cast(); > + > + // INVARIANT: `Layout::array` fails if the resulting byte size is greater than `isize::MAX`. > + self.cap = new_cap; > + > + Ok(()) > + } > +} > + > +impl<T: Clone, A: Allocator> Vec<T, A> { > + /// Extend the vector by `n` clones of `value`. > + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { > + if n == 0 { > + return Ok(()); > + } > + > + self.reserve(n, flags)?; > + > + let spare = self.spare_capacity_mut(); > + > + for item in spare.iter_mut().take(n - 1) { > + item.write(value.clone()); > + } > + > + // We can write the last element directly without cloning needlessly. > + spare[n - 1].write(value); > + > + // SAFETY: > + // - `self.len() + n < self.capacity()` due to the call to reserve above, > + // - the loop and the line above initialized the next `n` elements. > + unsafe { self.set_len(self.len() + n) }; > + > + Ok(()) > + } > + > + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. > + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { > + let mut v = Self::with_capacity(n, flags)?; > + > + v.extend_with(n, value, flags)?; > + > + Ok(v) > + } > +} > + > +impl<T, A> Drop for Vec<T, A> > +where > + A: Allocator, > +{ > + fn drop(&mut self) { > + // SAFETY: We need to drop the vector's elements in place, before we free the backing > + // memory. > + unsafe { > + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( > + self.as_mut_ptr(), > + self.len, > + )) > + }; Comment: this can be `core::ptr::drop_in_place(&mut *self)`. The standard library plays safe with raw pointers because it has `#[may_dangle]` on T. However I think we should keep the code as is. > + > + // If `cap == 0` we never allocated any memory in the first place. > + if self.cap != 0 { > + // SAFETY: `self.ptr` was previously allocated with `A`. > + unsafe { A::free(self.ptr.cast()) }; > + } > + } > +} > + > +impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A> > +where > + A: Allocator, > +{ > + fn from(b: Box<[T; N], A>) -> Vec<T, A> { > + let len = b.len(); > + let ptr = Box::into_raw(b); > + > + // SAFETY: > + // - `b` has been allocated with `A`, > + // - `ptr` fulfills the alignment requirements for `T`, > + // - `ptr` points to memory with at least a size of `size_of::<T>() * len`, > + // - all elements within `b` are initialized values of `T`, > + // - `len` does not exceed `isize::MAX`. > + unsafe { Vec::from_raw_parts(ptr as _, len, len) } > + } > +} > + > +impl<T> Default for KVec<T> { > + #[inline] > + fn default() -> Self { > + Self::new() > + } > +} > + > +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { > + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { > + fmt::Debug::fmt(&**self, f) > + } > +} > + > +impl<T, A> Deref for Vec<T, A> > +where > + A: Allocator, > +{ > + type Target = [T]; > + > + #[inline] > + fn deref(&self) -> &[T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } > + } > +} > + > +impl<T, A> DerefMut for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn deref_mut(&mut self) -> &mut [T] { > + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` > + // initialized elements of type `T`. > + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } > + } > +} > + > +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} > + > +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + type Output = I::Output; > + > + #[inline] > + fn index(&self, index: I) -> &Self::Output { > + Index::index(&**self, index) > + } > +} > + > +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> > +where > + A: Allocator, > +{ > + #[inline] > + fn index_mut(&mut self, index: I) -> &mut Self::Output { > + IndexMut::index_mut(&mut **self, index) > + } > +} > + > +macro_rules! impl_slice_eq { > + ([$($vars:tt)*] $lhs:ty, $rhs:ty) => { > + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs > + where > + T: PartialEq<U>, > + { > + #[inline] > + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } > + } > + } > +} > + > +impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } > +impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } > +impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } > +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } > diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs > index d5f2fe42d093..80223cdaa485 100644 > --- a/rust/kernel/prelude.rs > +++ b/rust/kernel/prelude.rs > @@ -14,7 +14,7 @@ > #[doc(no_inline)] > pub use core::pin::Pin; > > -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; > +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; > > #[doc(no_inline)] > pub use alloc::vec::Vec;
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs index 1d0cb6f12af9..4fb983b63d46 100644 --- a/rust/kernel/alloc.rs +++ b/rust/kernel/alloc.rs @@ -5,6 +5,7 @@ #[cfg(not(any(test, testlib)))] pub mod allocator; pub mod kbox; +pub mod kvec; pub mod vec_ext; #[cfg(any(test, testlib))] @@ -18,6 +19,11 @@ pub use self::kbox::KVBox; pub use self::kbox::VBox; +pub use self::kvec::KVVec; +pub use self::kvec::KVec; +pub use self::kvec::VVec; +pub use self::kvec::Vec; + /// Indicates an allocation error. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct AllocError; diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs new file mode 100644 index 000000000000..631a44e19f35 --- /dev/null +++ b/rust/kernel/alloc/kvec.rs @@ -0,0 +1,638 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Vec`]. + +use super::{ + allocator::{KVmalloc, Kmalloc, Vmalloc}, + AllocError, Allocator, Box, Flags, +}; +use core::{ + fmt, + marker::PhantomData, + mem::{ManuallyDrop, MaybeUninit}, + ops::Deref, + ops::DerefMut, + ops::Index, + ops::IndexMut, + ptr::NonNull, + slice, + slice::SliceIndex, +}; + +/// Create a [`Vec`] containing the arguments. +/// +/// # Examples +/// +/// ``` +/// let mut v = kernel::kvec![]; +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(v, [1]); +/// +/// let mut v = kernel::kvec![1; 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 1, 1, 4]); +/// +/// let mut v = kernel::kvec![1, 2, 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 2, 3, 4]); +/// +/// # Ok::<(), Error>(()) +/// ``` +#[macro_export] +macro_rules! kvec { + () => ( + $crate::alloc::KVec::new() + ); + ($elem:expr; $n:expr) => ( + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) + ); + ($($x:expr),+ $(,)?) => ( + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), + Err(e) => Err(e), + } + ); +} + +/// The kernel's [`Vec`] type. +/// +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. +/// `Kmalloc`, `Vmalloc` or `KVmalloc`), written `Vec<T, A>`. +/// +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For +/// the most common allocators the type aliases `KVec`, `VVec` and `KVVec` exist. +/// +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. +/// +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the +/// capacity of the vector (the number of elements that currently fit into the vector), it's length +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used +/// to allocate (and free) the backing buffer. +/// +/// A [`Vec`] can be deconstructed into and (re-)constructed from it's previously named raw parts +/// and manually modified. +/// +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements +/// are added to the vector. +/// +/// # Invariants +/// +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for +/// zero-sized types, is a dangling, well aligned pointer. +/// +/// - `self.len` always represents the exact number of elements stored in the vector. +/// +/// - `self.cap` represents the absolute number of elements that can be stored within the vector +/// without re-allocation. However, it is legal for the backing buffer to be larger than +/// `size_of<T>` times the capacity. +/// +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer +/// was allocated with (and must be freed with). +pub struct Vec<T, A: Allocator> { + ptr: NonNull<T>, + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. + /// + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of + /// elements we can still store without reallocating. + /// + /// # Invariants + /// + /// `cap` must be in the `0..=isize::MAX` range. + cap: usize, + len: usize, + _p: PhantomData<A>, +} + +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVec<T> = Vec<T, Kmalloc>; + +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = VVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type VVec<T> = Vec<T, Vmalloc>; + +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVVec<T> = Vec<T, KVmalloc>; + +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. +unsafe impl<T, A> Send for Vec<T, A> +where + T: Send, + A: Allocator, +{ +} + +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. +unsafe impl<T, A> Sync for Vec<T, A> +where + T: Sync, + A: Allocator, +{ +} + +impl<T, A> Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn is_zst() -> bool { + core::mem::size_of::<T>() == 0 + } + + /// Returns the number of elements that can be stored within the vector without allocating + /// additional memory. + pub fn capacity(&self) -> usize { + if Self::is_zst() { + usize::MAX + } else { + self.cap + } + } + + /// Returns the number of elements stored within the vector. + #[inline] + pub fn len(&self) -> usize { + self.len + } + + /// Forcefully sets `self.len` to `new_len`. + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`Self::capacity`]. + /// - If `new_len` is greater than `self.len`, all elements within the interval + /// [`self.len`,`new_len`) must be initialized. + #[inline] + pub unsafe fn set_len(&mut self, new_len: usize) { + debug_assert!(new_len <= self.capacity()); + self.len = new_len; + } + + /// Returns a slice of the entire vector. + #[inline] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Returns a mutable slice of the entire vector. + #[inline] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a + /// dangling raw pointer. + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + self.ptr.as_ptr() + } + + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw + /// pointer. + #[inline] + pub fn as_ptr(&self) -> *const T { + self.ptr.as_ptr() + } + + /// Returns `true` if the vector contains no elements, `false` otherwise. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1, GFP_KERNEL); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Creates a new, empty Vec<T, A>. + /// + /// This method does not allocate by itself. + #[inline] + pub const fn new() -> Self { + Self { + ptr: NonNull::dangling(), + cap: 0, + len: 0, + _p: PhantomData::<A>, + } + } + + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; + + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated + // and valid, but uninitialized. + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } + } + + /// Appends an element to the back of the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// assert_eq!(&v, &[1]); + /// + /// v.push(2, GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 2]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { + Vec::reserve(self, 1, flags)?; + + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; + + // SAFETY: + // - `ptr` is properly aligned and valid for writes. + unsafe { core::ptr::write(ptr, v) }; + + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length + // by 1. We also know that the new length is <= capacity because of the previous call to + // `reserve` above. + unsafe { self.set_len(self.len() + 1) }; + Ok(()) + } + + /// Creates a new [`Vec`] instance with at least the given capacity. + /// + /// # Examples + /// + /// ``` + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; + /// + /// assert!(v.capacity() >= 20); + /// # Ok::<(), Error>(()) + /// ``` + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Vec::new(); + + Self::reserve(&mut v, capacity, flags)?; + + Ok(v) + } + + /// Pushes clones of the elements of slice into the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40]); + /// + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> + where + T: Clone, + { + self.reserve(other.len(), flags)?; + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { + slot.write(item.clone()); + } + + // SAFETY: + // - `other.len()` spare entries have just been initialized, so it is safe to increase + // the length by the same number. + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` + // call. + unsafe { self.set_len(self.len() + other.len()) }; + Ok(()) + } + + /// Creates a Vec<T, A> from a pointer, a length and a capacity using the allocator `A`. + /// + /// # Examples + /// + /// ``` + /// let mut v = kernel::kvec![1, 2, 3]?; + /// v.reserve(1, GFP_KERNEL)?; + /// + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); + /// + /// // SAFETY: We've just reserved memory for another element. + /// unsafe { ptr.add(len).write(4) }; + /// len += 1; + /// + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it + /// // from the exact same raw parts. + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; + /// + /// assert_eq!(v, [1, 2, 3, 4]); + /// + /// # Ok::<(), Error>(()) + /// ``` + /// + /// # Safety + /// + /// If `T` is a ZST: + /// + /// - `ptr` must be a dangling, well aligned pointer. + /// + /// Otherwise: + /// + /// - `ptr` must have been allocated with the allocator `A`. + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity`. + /// bytes. + /// - The allocated size in bytes must not be larger than `isize::MAX`. + /// - `length` must be less than or equal to `capacity`. + /// - The first `length` elements must be initialized values of type `T`. + /// + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for + /// `cap` and `len`. + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { + let cap = if Self::is_zst() { 0 } else { capacity }; + + Self { + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid + // memory allocation, allocated with `A`. + ptr: unsafe { NonNull::new_unchecked(ptr) }, + cap, + len: length, + _p: PhantomData::<A>, + } + } + + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. + /// + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the + /// elements and free the allocation, if any. + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let mut me = ManuallyDrop::new(self); + let len = me.len(); + let capacity = me.capacity(); + let ptr = me.as_mut_ptr(); + (ptr, len, capacity) + } + + /// Ensures that the capacity exceeds the length by at least `additional` + /// elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let cap = v.capacity(); + /// assert!(cap >= 10); + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let new_cap = v.capacity(); + /// assert_eq!(new_cap, cap); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { + let len = self.len(); + let cap = self.capacity(); + + if cap - len >= additional { + return Ok(()); + } + + if Self::is_zst() { + // The capacity is already `usize::MAX` for ZSTs, we can't go higher. + return Err(AllocError); + } + + // We know `cap` is <= `isize::MAX` because of the type invariants of `Self`. So the + // multiplication by two won't overflow. + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); + let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?; + + // We need to make sure that `ptr` is either NULL or comes from a previous call to + // `realloc_flags`. A `Vec<T, A>`'s `ptr` value is not guaranteed to be NULL and might be + // dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T, A>`'s + // capacity to be zero if no memory has been allocated yet. + let ptr = if cap == 0 { + None + } else { + Some(self.ptr.cast()) + }; + + // SAFETY: `ptr` is valid because it's either `None` or comes from a previous call to + // `A::realloc`. We also verified that the type is not a ZST. + let ptr = unsafe { A::realloc(ptr, layout, flags)? }; + + self.ptr = ptr.cast(); + + // INVARIANT: `Layout::array` fails if the resulting byte size is greater than `isize::MAX`. + self.cap = new_cap; + + Ok(()) + } +} + +impl<T: Clone, A: Allocator> Vec<T, A> { + /// Extend the vector by `n` clones of `value`. + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { + if n == 0 { + return Ok(()); + } + + self.reserve(n, flags)?; + + let spare = self.spare_capacity_mut(); + + for item in spare.iter_mut().take(n - 1) { + item.write(value.clone()); + } + + // We can write the last element directly without cloning needlessly. + spare[n - 1].write(value); + + // SAFETY: + // - `self.len() + n < self.capacity()` due to the call to reserve above, + // - the loop and the line above initialized the next `n` elements. + unsafe { self.set_len(self.len() + n) }; + + Ok(()) + } + + /// Create a new `Vec<T, A> and extend it by `n` clones of `value`. + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Self::with_capacity(n, flags)?; + + v.extend_with(n, value, flags)?; + + Ok(v) + } +} + +impl<T, A> Drop for Vec<T, A> +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: We need to drop the vector's elements in place, before we free the backing + // memory. + unsafe { + core::ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( + self.as_mut_ptr(), + self.len, + )) + }; + + // If `cap == 0` we never allocated any memory in the first place. + if self.cap != 0 { + // SAFETY: `self.ptr` was previously allocated with `A`. + unsafe { A::free(self.ptr.cast()) }; + } + } +} + +impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A> +where + A: Allocator, +{ + fn from(b: Box<[T; N], A>) -> Vec<T, A> { + let len = b.len(); + let ptr = Box::into_raw(b); + + // SAFETY: + // - `b` has been allocated with `A`, + // - `ptr` fulfills the alignment requirements for `T`, + // - `ptr` points to memory with at least a size of `size_of::<T>() * len`, + // - all elements within `b` are initialized values of `T`, + // - `len` does not exceed `isize::MAX`. + unsafe { Vec::from_raw_parts(ptr as _, len, len) } + } +} + +impl<T> Default for KVec<T> { + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T, A> Deref for Vec<T, A> +where + A: Allocator, +{ + type Target = [T]; + + #[inline] + fn deref(&self) -> &[T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl<T, A> DerefMut for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn deref_mut(&mut self) -> &mut [T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} + +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> +where + A: Allocator, +{ + type Output = I::Output; + + #[inline] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +macro_rules! impl_slice_eq { + ([$($vars:tt)*] $lhs:ty, $rhs:ty) => { + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs + where + T: PartialEq<U>, + { + #[inline] + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } + } + } +} + +impl_slice_eq! { [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2> } +impl_slice_eq! { [A: Allocator] Vec<T, A>, &[U] } +impl_slice_eq! { [A: Allocator] Vec<T, A>, &mut [U] } +impl_slice_eq! { [A: Allocator] &[T], Vec<U, A> } +impl_slice_eq! { [A: Allocator] &mut [T], Vec<U, A> } +impl_slice_eq! { [A: Allocator] Vec<T, A>, [U] } +impl_slice_eq! { [A: Allocator] [T], Vec<U, A> } +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, [U; N] } +impl_slice_eq! { [A: Allocator, const N: usize] Vec<T, A>, &[U; N] } diff --git a/rust/kernel/prelude.rs b/rust/kernel/prelude.rs index d5f2fe42d093..80223cdaa485 100644 --- a/rust/kernel/prelude.rs +++ b/rust/kernel/prelude.rs @@ -14,7 +14,7 @@ #[doc(no_inline)] pub use core::pin::Pin; -pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, VBox}; +pub use crate::alloc::{flags::*, vec_ext::VecExt, Box, KBox, KVBox, KVVec, KVec, VBox, VVec}; #[doc(no_inline)] pub use alloc::vec::Vec;
`Vec` provides a contiguous growable array type with contents allocated with the kernel's allocators (e.g. `Kmalloc`, `Vmalloc` or `KVmalloc`). In contrast to Rust's stdlib `Vec` type, the kernel `Vec` type considers the kernel's GFP flags for all appropriate functions, always reports allocation failures through `Result<_, AllocError>` and remains independent from unstable features. Signed-off-by: Danilo Krummrich <dakr@kernel.org> --- rust/kernel/alloc.rs | 6 + rust/kernel/alloc/kvec.rs | 638 ++++++++++++++++++++++++++++++++++++++ rust/kernel/prelude.rs | 2 +- 3 files changed, 645 insertions(+), 1 deletion(-) create mode 100644 rust/kernel/alloc/kvec.rs