diff mbox series

[v4,tip/perf/core,1/4] mm: Convert mm_lock_seq to a proper seqcount

Message ID 20241028010818.2487581-2-andrii@kernel.org (mailing list archive)
State New
Headers show
Series uprobes,mm: speculative lockless VMA-to-uprobe lookup | expand

Commit Message

Andrii Nakryiko Oct. 28, 2024, 1:08 a.m. UTC
From: Suren Baghdasaryan <surenb@google.com>

Convert mm_lock_seq to be seqcount_t and change all mmap_write_lock
variants to increment it, in-line with the usual seqcount usage pattern.
This lets us check whether the mmap_lock is write-locked by checking
mm_lock_seq.sequence counter (odd=locked, even=unlocked). This will be
used when implementing mmap_lock speculation functions.
As a result vm_lock_seq is also change to be unsigned to match the type
of mm_lock_seq.sequence.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
---
 include/linux/mm.h               | 12 +++----
 include/linux/mm_types.h         |  7 ++--
 include/linux/mmap_lock.h        | 58 +++++++++++++++++++++-----------
 kernel/fork.c                    |  5 +--
 mm/init-mm.c                     |  2 +-
 tools/testing/vma/vma.c          |  4 +--
 tools/testing/vma/vma_internal.h |  4 +--
 7 files changed, 56 insertions(+), 36 deletions(-)

Comments

Vlastimil Babka Oct. 29, 2024, 11:52 a.m. UTC | #1
On 10/28/24 02:08, Andrii Nakryiko wrote:
> From: Suren Baghdasaryan <surenb@google.com>
> 
> Convert mm_lock_seq to be seqcount_t and change all mmap_write_lock
> variants to increment it, in-line with the usual seqcount usage pattern.
> This lets us check whether the mmap_lock is write-locked by checking
> mm_lock_seq.sequence counter (odd=locked, even=unlocked). This will be
> used when implementing mmap_lock speculation functions.
> As a result vm_lock_seq is also change to be unsigned to match the type
> of mm_lock_seq.sequence.
> 
> Suggested-by: Peter Zijlstra <peterz@infradead.org>
> Signed-off-by: Suren Baghdasaryan <surenb@google.com>
> Signed-off-by: Andrii Nakryiko <andrii@kernel.org>

Acked-by: Vlastimil Babka <vbabka@suse.cz>
Peter Zijlstra Nov. 21, 2024, 12:40 p.m. UTC | #2
On Sun, Oct 27, 2024 at 06:08:15PM -0700, Andrii Nakryiko wrote:
> +/*
> + * Drop all currently-held per-VMA locks.
> + * This is called from the mmap_lock implementation directly before releasing
> + * a write-locked mmap_lock (or downgrading it to read-locked).
> + * This should normally NOT be called manually from other places.
> + * If you want to call this manually anyway, keep in mind that this will release
> + * *all* VMA write locks, including ones from further up the stack.
> + */
> +static inline void vma_end_write_all(struct mm_struct *mm)
> +{
> +	mmap_assert_write_locked(mm);
> +	/*
> +	 * Nobody can concurrently modify mm->mm_lock_seq due to exclusive
> +	 * mmap_lock being held.
> +	 */

You can write:

	ASSERT_EXCLUSIVE_WRITER(mm->mm_lock_seq);

instead of that comment. Then KCSAN will validate the claim.

> +	mm_lock_seqcount_end(mm);
> +}
Suren Baghdasaryan Nov. 21, 2024, 3:35 p.m. UTC | #3
On Thu, Nov 21, 2024 at 4:40 AM Peter Zijlstra <peterz@infradead.org> wrote:
>
> On Sun, Oct 27, 2024 at 06:08:15PM -0700, Andrii Nakryiko wrote:
> > +/*
> > + * Drop all currently-held per-VMA locks.
> > + * This is called from the mmap_lock implementation directly before releasing
> > + * a write-locked mmap_lock (or downgrading it to read-locked).
> > + * This should normally NOT be called manually from other places.
> > + * If you want to call this manually anyway, keep in mind that this will release
> > + * *all* VMA write locks, including ones from further up the stack.
> > + */
> > +static inline void vma_end_write_all(struct mm_struct *mm)
> > +{
> > +     mmap_assert_write_locked(mm);
> > +     /*
> > +      * Nobody can concurrently modify mm->mm_lock_seq due to exclusive
> > +      * mmap_lock being held.
> > +      */
>
> You can write:
>
>         ASSERT_EXCLUSIVE_WRITER(mm->mm_lock_seq);
>
> instead of that comment. Then KCSAN will validate the claim.

Thanks for the tip! This one looks not critical but I see there are
more important comments in "mm: Introduce
mmap_lock_speculation_{begin|end}". I'll send a new version shortly.

>
> > +     mm_lock_seqcount_end(mm);
> > +}
diff mbox series

Patch

diff --git a/include/linux/mm.h b/include/linux/mm.h
index ecf63d2b0582..94b537088142 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -698,7 +698,7 @@  static inline bool vma_start_read(struct vm_area_struct *vma)
 	 * we don't rely on for anything - the mm_lock_seq read against which we
 	 * need ordering is below.
 	 */
-	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
+	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence))
 		return false;
 
 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
@@ -715,7 +715,7 @@  static inline bool vma_start_read(struct vm_area_struct *vma)
 	 * after it has been unlocked.
 	 * This pairs with RELEASE semantics in vma_end_write_all().
 	 */
-	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
+	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) {
 		up_read(&vma->vm_lock->lock);
 		return false;
 	}
@@ -730,7 +730,7 @@  static inline void vma_end_read(struct vm_area_struct *vma)
 }
 
 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
-static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
+static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
 {
 	mmap_assert_write_locked(vma->vm_mm);
 
@@ -738,7 +738,7 @@  static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
 	 * mm->mm_lock_seq can't be concurrently modified.
 	 */
-	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
+	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
 	return (vma->vm_lock_seq == *mm_lock_seq);
 }
 
@@ -749,7 +749,7 @@  static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
  */
 static inline void vma_start_write(struct vm_area_struct *vma)
 {
-	int mm_lock_seq;
+	unsigned int mm_lock_seq;
 
 	if (__is_vma_write_locked(vma, &mm_lock_seq))
 		return;
@@ -767,7 +767,7 @@  static inline void vma_start_write(struct vm_area_struct *vma)
 
 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
 {
-	int mm_lock_seq;
+	unsigned int mm_lock_seq;
 
 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
 }
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h
index 6e3bdf8e38bc..76e0cdc0462b 100644
--- a/include/linux/mm_types.h
+++ b/include/linux/mm_types.h
@@ -715,7 +715,7 @@  struct vm_area_struct {
 	 * counter reuse can only lead to occasional unnecessary use of the
 	 * slowpath.
 	 */
-	int vm_lock_seq;
+	unsigned int vm_lock_seq;
 	/* Unstable RCU readers are allowed to read this. */
 	struct vma_lock *vm_lock;
 #endif
@@ -887,6 +887,9 @@  struct mm_struct {
 		 * Roughly speaking, incrementing the sequence number is
 		 * equivalent to releasing locks on VMAs; reading the sequence
 		 * number can be part of taking a read lock on a VMA.
+		 * Incremented every time mmap_lock is write-locked/unlocked.
+		 * Initialized to 0, therefore odd values indicate mmap_lock
+		 * is write-locked and even values that it's released.
 		 *
 		 * Can be modified under write mmap_lock using RELEASE
 		 * semantics.
@@ -895,7 +898,7 @@  struct mm_struct {
 		 * Can be read with ACQUIRE semantics if not holding write
 		 * mmap_lock.
 		 */
-		int mm_lock_seq;
+		seqcount_t mm_lock_seq;
 #endif
 
 
diff --git a/include/linux/mmap_lock.h b/include/linux/mmap_lock.h
index de9dc20b01ba..6b3272686860 100644
--- a/include/linux/mmap_lock.h
+++ b/include/linux/mmap_lock.h
@@ -71,39 +71,38 @@  static inline void mmap_assert_write_locked(const struct mm_struct *mm)
 }
 
 #ifdef CONFIG_PER_VMA_LOCK
-/*
- * Drop all currently-held per-VMA locks.
- * This is called from the mmap_lock implementation directly before releasing
- * a write-locked mmap_lock (or downgrading it to read-locked).
- * This should normally NOT be called manually from other places.
- * If you want to call this manually anyway, keep in mind that this will release
- * *all* VMA write locks, including ones from further up the stack.
- */
-static inline void vma_end_write_all(struct mm_struct *mm)
+static inline void mm_lock_seqcount_init(struct mm_struct *mm)
 {
-	mmap_assert_write_locked(mm);
-	/*
-	 * Nobody can concurrently modify mm->mm_lock_seq due to exclusive
-	 * mmap_lock being held.
-	 * We need RELEASE semantics here to ensure that preceding stores into
-	 * the VMA take effect before we unlock it with this store.
-	 * Pairs with ACQUIRE semantics in vma_start_read().
-	 */
-	smp_store_release(&mm->mm_lock_seq, mm->mm_lock_seq + 1);
+	seqcount_init(&mm->mm_lock_seq);
+}
+
+static inline void mm_lock_seqcount_begin(struct mm_struct *mm)
+{
+	do_raw_write_seqcount_begin(&mm->mm_lock_seq);
+}
+
+static inline void mm_lock_seqcount_end(struct mm_struct *mm)
+{
+	do_raw_write_seqcount_end(&mm->mm_lock_seq);
 }
+
 #else
-static inline void vma_end_write_all(struct mm_struct *mm) {}
+static inline void mm_lock_seqcount_init(struct mm_struct *mm) {}
+static inline void mm_lock_seqcount_begin(struct mm_struct *mm) {}
+static inline void mm_lock_seqcount_end(struct mm_struct *mm) {}
 #endif
 
 static inline void mmap_init_lock(struct mm_struct *mm)
 {
 	init_rwsem(&mm->mmap_lock);
+	mm_lock_seqcount_init(mm);
 }
 
 static inline void mmap_write_lock(struct mm_struct *mm)
 {
 	__mmap_lock_trace_start_locking(mm, true);
 	down_write(&mm->mmap_lock);
+	mm_lock_seqcount_begin(mm);
 	__mmap_lock_trace_acquire_returned(mm, true, true);
 }
 
@@ -111,6 +110,7 @@  static inline void mmap_write_lock_nested(struct mm_struct *mm, int subclass)
 {
 	__mmap_lock_trace_start_locking(mm, true);
 	down_write_nested(&mm->mmap_lock, subclass);
+	mm_lock_seqcount_begin(mm);
 	__mmap_lock_trace_acquire_returned(mm, true, true);
 }
 
@@ -120,10 +120,30 @@  static inline int mmap_write_lock_killable(struct mm_struct *mm)
 
 	__mmap_lock_trace_start_locking(mm, true);
 	ret = down_write_killable(&mm->mmap_lock);
+	if (!ret)
+		mm_lock_seqcount_begin(mm);
 	__mmap_lock_trace_acquire_returned(mm, true, ret == 0);
 	return ret;
 }
 
+/*
+ * Drop all currently-held per-VMA locks.
+ * This is called from the mmap_lock implementation directly before releasing
+ * a write-locked mmap_lock (or downgrading it to read-locked).
+ * This should normally NOT be called manually from other places.
+ * If you want to call this manually anyway, keep in mind that this will release
+ * *all* VMA write locks, including ones from further up the stack.
+ */
+static inline void vma_end_write_all(struct mm_struct *mm)
+{
+	mmap_assert_write_locked(mm);
+	/*
+	 * Nobody can concurrently modify mm->mm_lock_seq due to exclusive
+	 * mmap_lock being held.
+	 */
+	mm_lock_seqcount_end(mm);
+}
+
 static inline void mmap_write_unlock(struct mm_struct *mm)
 {
 	__mmap_lock_trace_released(mm, true);
diff --git a/kernel/fork.c b/kernel/fork.c
index 89ceb4a68af2..55c4088543dc 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -448,7 +448,7 @@  static bool vma_lock_alloc(struct vm_area_struct *vma)
 		return false;
 
 	init_rwsem(&vma->vm_lock->lock);
-	vma->vm_lock_seq = -1;
+	vma->vm_lock_seq = UINT_MAX;
 
 	return true;
 }
@@ -1261,9 +1261,6 @@  static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 	seqcount_init(&mm->write_protect_seq);
 	mmap_init_lock(mm);
 	INIT_LIST_HEAD(&mm->mmlist);
-#ifdef CONFIG_PER_VMA_LOCK
-	mm->mm_lock_seq = 0;
-#endif
 	mm_pgtables_bytes_init(mm);
 	mm->map_count = 0;
 	mm->locked_vm = 0;
diff --git a/mm/init-mm.c b/mm/init-mm.c
index 24c809379274..6af3ad675930 100644
--- a/mm/init-mm.c
+++ b/mm/init-mm.c
@@ -40,7 +40,7 @@  struct mm_struct init_mm = {
 	.arg_lock	=  __SPIN_LOCK_UNLOCKED(init_mm.arg_lock),
 	.mmlist		= LIST_HEAD_INIT(init_mm.mmlist),
 #ifdef CONFIG_PER_VMA_LOCK
-	.mm_lock_seq	= 0,
+	.mm_lock_seq	= SEQCNT_ZERO(init_mm.mm_lock_seq),
 #endif
 	.user_ns	= &init_user_ns,
 	.cpu_bitmap	= CPU_BITS_NONE,
diff --git a/tools/testing/vma/vma.c b/tools/testing/vma/vma.c
index c53f220eb6cc..bcdf831dfe3e 100644
--- a/tools/testing/vma/vma.c
+++ b/tools/testing/vma/vma.c
@@ -87,7 +87,7 @@  static struct vm_area_struct *alloc_and_link_vma(struct mm_struct *mm,
 	 * begun. Linking to the tree will have caused this to be incremented,
 	 * which means we will get a false positive otherwise.
 	 */
-	vma->vm_lock_seq = -1;
+	vma->vm_lock_seq = UINT_MAX;
 
 	return vma;
 }
@@ -212,7 +212,7 @@  static bool vma_write_started(struct vm_area_struct *vma)
 	int seq = vma->vm_lock_seq;
 
 	/* We reset after each check. */
-	vma->vm_lock_seq = -1;
+	vma->vm_lock_seq = UINT_MAX;
 
 	/* The vma_start_write() stub simply increments this value. */
 	return seq > -1;
diff --git a/tools/testing/vma/vma_internal.h b/tools/testing/vma/vma_internal.h
index c5b9da034511..4007ec580f85 100644
--- a/tools/testing/vma/vma_internal.h
+++ b/tools/testing/vma/vma_internal.h
@@ -231,7 +231,7 @@  struct vm_area_struct {
 	 * counter reuse can only lead to occasional unnecessary use of the
 	 * slowpath.
 	 */
-	int vm_lock_seq;
+	unsigned int vm_lock_seq;
 	struct vma_lock *vm_lock;
 #endif
 
@@ -406,7 +406,7 @@  static inline bool vma_lock_alloc(struct vm_area_struct *vma)
 		return false;
 
 	init_rwsem(&vma->vm_lock->lock);
-	vma->vm_lock_seq = -1;
+	vma->vm_lock_seq = UINT_MAX;
 
 	return true;
 }