diff mbox series

[13/27] mm: move the migrate_vma_* device migration code into it's own file

Message ID 20220210072828.2930359-14-hch@lst.de (mailing list archive)
State Accepted
Commit 76cbbead253ddcae9878be0d702208bb1e4fac6f
Headers show
Series [01/27] mm: remove a pointless CONFIG_ZONE_DEVICE check in memremap_pages | expand

Commit Message

Christoph Hellwig Feb. 10, 2022, 7:28 a.m. UTC
Split the code used to migrate to and from ZONE_DEVICE memory from
migrate.c into a new file.

Signed-off-by: Christoph Hellwig <hch@lst.de>
---
 mm/Kconfig          |   3 +
 mm/Makefile         |   1 +
 mm/migrate.c        | 753 -------------------------------------------
 mm/migrate_device.c | 765 ++++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 769 insertions(+), 753 deletions(-)
 create mode 100644 mm/migrate_device.c

Comments

Alistair Popple Feb. 10, 2022, 10:35 a.m. UTC | #1
I got the following build error:

/data/source/linux/mm/migrate_device.c: In function ‘migrate_vma_collect_pmd’:
/data/source/linux/mm/migrate_device.c:242:3: error: implicit declaration of function ‘flush_tlb_range’; did you mean ‘flush_pmd_tlb_range’? [-Werror=implicit-function-declaration]
  242 |   flush_tlb_range(walk->vma, start, end);
      |   ^~~~~~~~~~~~~~~
      |   flush_pmd_tlb_range

Including asm/tlbflush.h in migrate_device.c fixed it for me.

On Thursday, 10 February 2022 6:28:14 PM AEDT Christoph Hellwig wrote:
> Split the code used to migrate to and from ZONE_DEVICE memory from
> migrate.c into a new file.
> 
> Signed-off-by: Christoph Hellwig <hch@lst.de>
> ---
>  mm/Kconfig          |   3 +
>  mm/Makefile         |   1 +
>  mm/migrate.c        | 753 -------------------------------------------
>  mm/migrate_device.c | 765 ++++++++++++++++++++++++++++++++++++++++++++
>  4 files changed, 769 insertions(+), 753 deletions(-)
>  create mode 100644 mm/migrate_device.c
> 
> diff --git a/mm/Kconfig b/mm/Kconfig
> index a1901ae6d06293..6391d8d3a616f3 100644
> --- a/mm/Kconfig
> +++ b/mm/Kconfig
> @@ -249,6 +249,9 @@ config MIGRATION
>  	  pages as migration can relocate pages to satisfy a huge page
>  	  allocation instead of reclaiming.
>  
> +config DEVICE_MIGRATION
> +	def_bool MIGRATION && DEVICE_PRIVATE
> +
>  config ARCH_ENABLE_HUGEPAGE_MIGRATION
>  	bool
>  
> diff --git a/mm/Makefile b/mm/Makefile
> index 70d4309c9ce338..4cc13f3179a518 100644
> --- a/mm/Makefile
> +++ b/mm/Makefile
> @@ -92,6 +92,7 @@ obj-$(CONFIG_KFENCE) += kfence/
>  obj-$(CONFIG_FAILSLAB) += failslab.o
>  obj-$(CONFIG_MEMTEST)		+= memtest.o
>  obj-$(CONFIG_MIGRATION) += migrate.o
> +obj-$(CONFIG_DEVICE_MIGRATION) += migrate_device.o
>  obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o khugepaged.o
>  obj-$(CONFIG_PAGE_COUNTER) += page_counter.o
>  obj-$(CONFIG_MEMCG) += memcontrol.o vmpressure.o
> diff --git a/mm/migrate.c b/mm/migrate.c
> index 746e1230886ddb..c31d04b46a5e17 100644
> --- a/mm/migrate.c
> +++ b/mm/migrate.c
> @@ -38,12 +38,10 @@
>  #include <linux/hugetlb.h>
>  #include <linux/hugetlb_cgroup.h>
>  #include <linux/gfp.h>
> -#include <linux/pagewalk.h>
>  #include <linux/pfn_t.h>
>  #include <linux/memremap.h>
>  #include <linux/userfaultfd_k.h>
>  #include <linux/balloon_compaction.h>
> -#include <linux/mmu_notifier.h>
>  #include <linux/page_idle.h>
>  #include <linux/page_owner.h>
>  #include <linux/sched/mm.h>
> @@ -2125,757 +2123,6 @@ int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
>  #endif /* CONFIG_NUMA_BALANCING */
>  #endif /* CONFIG_NUMA */
>  
> -#ifdef CONFIG_DEVICE_PRIVATE
> -static int migrate_vma_collect_skip(unsigned long start,
> -				    unsigned long end,
> -				    struct mm_walk *walk)
> -{
> -	struct migrate_vma *migrate = walk->private;
> -	unsigned long addr;
> -
> -	for (addr = start; addr < end; addr += PAGE_SIZE) {
> -		migrate->dst[migrate->npages] = 0;
> -		migrate->src[migrate->npages++] = 0;
> -	}
> -
> -	return 0;
> -}
> -
> -static int migrate_vma_collect_hole(unsigned long start,
> -				    unsigned long end,
> -				    __always_unused int depth,
> -				    struct mm_walk *walk)
> -{
> -	struct migrate_vma *migrate = walk->private;
> -	unsigned long addr;
> -
> -	/* Only allow populating anonymous memory. */
> -	if (!vma_is_anonymous(walk->vma))
> -		return migrate_vma_collect_skip(start, end, walk);
> -
> -	for (addr = start; addr < end; addr += PAGE_SIZE) {
> -		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
> -		migrate->dst[migrate->npages] = 0;
> -		migrate->npages++;
> -		migrate->cpages++;
> -	}
> -
> -	return 0;
> -}
> -
> -static int migrate_vma_collect_pmd(pmd_t *pmdp,
> -				   unsigned long start,
> -				   unsigned long end,
> -				   struct mm_walk *walk)
> -{
> -	struct migrate_vma *migrate = walk->private;
> -	struct vm_area_struct *vma = walk->vma;
> -	struct mm_struct *mm = vma->vm_mm;
> -	unsigned long addr = start, unmapped = 0;
> -	spinlock_t *ptl;
> -	pte_t *ptep;
> -
> -again:
> -	if (pmd_none(*pmdp))
> -		return migrate_vma_collect_hole(start, end, -1, walk);
> -
> -	if (pmd_trans_huge(*pmdp)) {
> -		struct page *page;
> -
> -		ptl = pmd_lock(mm, pmdp);
> -		if (unlikely(!pmd_trans_huge(*pmdp))) {
> -			spin_unlock(ptl);
> -			goto again;
> -		}
> -
> -		page = pmd_page(*pmdp);
> -		if (is_huge_zero_page(page)) {
> -			spin_unlock(ptl);
> -			split_huge_pmd(vma, pmdp, addr);
> -			if (pmd_trans_unstable(pmdp))
> -				return migrate_vma_collect_skip(start, end,
> -								walk);
> -		} else {
> -			int ret;
> -
> -			get_page(page);
> -			spin_unlock(ptl);
> -			if (unlikely(!trylock_page(page)))
> -				return migrate_vma_collect_skip(start, end,
> -								walk);
> -			ret = split_huge_page(page);
> -			unlock_page(page);
> -			put_page(page);
> -			if (ret)
> -				return migrate_vma_collect_skip(start, end,
> -								walk);
> -			if (pmd_none(*pmdp))
> -				return migrate_vma_collect_hole(start, end, -1,
> -								walk);
> -		}
> -	}
> -
> -	if (unlikely(pmd_bad(*pmdp)))
> -		return migrate_vma_collect_skip(start, end, walk);
> -
> -	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
> -	arch_enter_lazy_mmu_mode();
> -
> -	for (; addr < end; addr += PAGE_SIZE, ptep++) {
> -		unsigned long mpfn = 0, pfn;
> -		struct page *page;
> -		swp_entry_t entry;
> -		pte_t pte;
> -
> -		pte = *ptep;
> -
> -		if (pte_none(pte)) {
> -			if (vma_is_anonymous(vma)) {
> -				mpfn = MIGRATE_PFN_MIGRATE;
> -				migrate->cpages++;
> -			}
> -			goto next;
> -		}
> -
> -		if (!pte_present(pte)) {
> -			/*
> -			 * Only care about unaddressable device page special
> -			 * page table entry. Other special swap entries are not
> -			 * migratable, and we ignore regular swapped page.
> -			 */
> -			entry = pte_to_swp_entry(pte);
> -			if (!is_device_private_entry(entry))
> -				goto next;
> -
> -			page = pfn_swap_entry_to_page(entry);
> -			if (!(migrate->flags &
> -				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
> -			    page->pgmap->owner != migrate->pgmap_owner)
> -				goto next;
> -
> -			mpfn = migrate_pfn(page_to_pfn(page)) |
> -					MIGRATE_PFN_MIGRATE;
> -			if (is_writable_device_private_entry(entry))
> -				mpfn |= MIGRATE_PFN_WRITE;
> -		} else {
> -			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
> -				goto next;
> -			pfn = pte_pfn(pte);
> -			if (is_zero_pfn(pfn)) {
> -				mpfn = MIGRATE_PFN_MIGRATE;
> -				migrate->cpages++;
> -				goto next;
> -			}
> -			page = vm_normal_page(migrate->vma, addr, pte);
> -			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
> -			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
> -		}
> -
> -		/* FIXME support THP */
> -		if (!page || !page->mapping || PageTransCompound(page)) {
> -			mpfn = 0;
> -			goto next;
> -		}
> -
> -		/*
> -		 * By getting a reference on the page we pin it and that blocks
> -		 * any kind of migration. Side effect is that it "freezes" the
> -		 * pte.
> -		 *
> -		 * We drop this reference after isolating the page from the lru
> -		 * for non device page (device page are not on the lru and thus
> -		 * can't be dropped from it).
> -		 */
> -		get_page(page);
> -
> -		/*
> -		 * Optimize for the common case where page is only mapped once
> -		 * in one process. If we can lock the page, then we can safely
> -		 * set up a special migration page table entry now.
> -		 */
> -		if (trylock_page(page)) {
> -			pte_t swp_pte;
> -
> -			migrate->cpages++;
> -			ptep_get_and_clear(mm, addr, ptep);
> -
> -			/* Setup special migration page table entry */
> -			if (mpfn & MIGRATE_PFN_WRITE)
> -				entry = make_writable_migration_entry(
> -							page_to_pfn(page));
> -			else
> -				entry = make_readable_migration_entry(
> -							page_to_pfn(page));
> -			swp_pte = swp_entry_to_pte(entry);
> -			if (pte_present(pte)) {
> -				if (pte_soft_dirty(pte))
> -					swp_pte = pte_swp_mksoft_dirty(swp_pte);
> -				if (pte_uffd_wp(pte))
> -					swp_pte = pte_swp_mkuffd_wp(swp_pte);
> -			} else {
> -				if (pte_swp_soft_dirty(pte))
> -					swp_pte = pte_swp_mksoft_dirty(swp_pte);
> -				if (pte_swp_uffd_wp(pte))
> -					swp_pte = pte_swp_mkuffd_wp(swp_pte);
> -			}
> -			set_pte_at(mm, addr, ptep, swp_pte);
> -
> -			/*
> -			 * This is like regular unmap: we remove the rmap and
> -			 * drop page refcount. Page won't be freed, as we took
> -			 * a reference just above.
> -			 */
> -			page_remove_rmap(page, false);
> -			put_page(page);
> -
> -			if (pte_present(pte))
> -				unmapped++;
> -		} else {
> -			put_page(page);
> -			mpfn = 0;
> -		}
> -
> -next:
> -		migrate->dst[migrate->npages] = 0;
> -		migrate->src[migrate->npages++] = mpfn;
> -	}
> -	arch_leave_lazy_mmu_mode();
> -	pte_unmap_unlock(ptep - 1, ptl);
> -
> -	/* Only flush the TLB if we actually modified any entries */
> -	if (unmapped)
> -		flush_tlb_range(walk->vma, start, end);
> -
> -	return 0;
> -}
> -
> -static const struct mm_walk_ops migrate_vma_walk_ops = {
> -	.pmd_entry		= migrate_vma_collect_pmd,
> -	.pte_hole		= migrate_vma_collect_hole,
> -};
> -
> -/*
> - * migrate_vma_collect() - collect pages over a range of virtual addresses
> - * @migrate: migrate struct containing all migration information
> - *
> - * This will walk the CPU page table. For each virtual address backed by a
> - * valid page, it updates the src array and takes a reference on the page, in
> - * order to pin the page until we lock it and unmap it.
> - */
> -static void migrate_vma_collect(struct migrate_vma *migrate)
> -{
> -	struct mmu_notifier_range range;
> -
> -	/*
> -	 * Note that the pgmap_owner is passed to the mmu notifier callback so
> -	 * that the registered device driver can skip invalidating device
> -	 * private page mappings that won't be migrated.
> -	 */
> -	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
> -		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
> -		migrate->pgmap_owner);
> -	mmu_notifier_invalidate_range_start(&range);
> -
> -	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
> -			&migrate_vma_walk_ops, migrate);
> -
> -	mmu_notifier_invalidate_range_end(&range);
> -	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
> -}
> -
> -/*
> - * migrate_vma_check_page() - check if page is pinned or not
> - * @page: struct page to check
> - *
> - * Pinned pages cannot be migrated. This is the same test as in
> - * folio_migrate_mapping(), except that here we allow migration of a
> - * ZONE_DEVICE page.
> - */
> -static bool migrate_vma_check_page(struct page *page)
> -{
> -	/*
> -	 * One extra ref because caller holds an extra reference, either from
> -	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
> -	 * a device page.
> -	 */
> -	int extra = 1;
> -
> -	/*
> -	 * FIXME support THP (transparent huge page), it is bit more complex to
> -	 * check them than regular pages, because they can be mapped with a pmd
> -	 * or with a pte (split pte mapping).
> -	 */
> -	if (PageCompound(page))
> -		return false;
> -
> -	/* Page from ZONE_DEVICE have one extra reference */
> -	if (is_zone_device_page(page))
> -		extra++;
> -
> -	/* For file back page */
> -	if (page_mapping(page))
> -		extra += 1 + page_has_private(page);
> -
> -	if ((page_count(page) - extra) > page_mapcount(page))
> -		return false;
> -
> -	return true;
> -}
> -
> -/*
> - * migrate_vma_unmap() - replace page mapping with special migration pte entry
> - * @migrate: migrate struct containing all migration information
> - *
> - * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
> - * special migration pte entry and check if it has been pinned. Pinned pages are
> - * restored because we cannot migrate them.
> - *
> - * This is the last step before we call the device driver callback to allocate
> - * destination memory and copy contents of original page over to new page.
> - */
> -static void migrate_vma_unmap(struct migrate_vma *migrate)
> -{
> -	const unsigned long npages = migrate->npages;
> -	unsigned long i, restore = 0;
> -	bool allow_drain = true;
> -
> -	lru_add_drain();
> -
> -	for (i = 0; i < npages; i++) {
> -		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> -
> -		if (!page)
> -			continue;
> -
> -		/* ZONE_DEVICE pages are not on LRU */
> -		if (!is_zone_device_page(page)) {
> -			if (!PageLRU(page) && allow_drain) {
> -				/* Drain CPU's pagevec */
> -				lru_add_drain_all();
> -				allow_drain = false;
> -			}
> -
> -			if (isolate_lru_page(page)) {
> -				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -				migrate->cpages--;
> -				restore++;
> -				continue;
> -			}
> -
> -			/* Drop the reference we took in collect */
> -			put_page(page);
> -		}
> -
> -		if (page_mapped(page))
> -			try_to_migrate(page, 0);
> -
> -		if (page_mapped(page) || !migrate_vma_check_page(page)) {
> -			if (!is_zone_device_page(page)) {
> -				get_page(page);
> -				putback_lru_page(page);
> -			}
> -
> -			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -			migrate->cpages--;
> -			restore++;
> -			continue;
> -		}
> -	}
> -
> -	for (i = 0; i < npages && restore; i++) {
> -		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> -
> -		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
> -			continue;
> -
> -		remove_migration_ptes(page, page, false);
> -
> -		migrate->src[i] = 0;
> -		unlock_page(page);
> -		put_page(page);
> -		restore--;
> -	}
> -}
> -
> -/**
> - * migrate_vma_setup() - prepare to migrate a range of memory
> - * @args: contains the vma, start, and pfns arrays for the migration
> - *
> - * Returns: negative errno on failures, 0 when 0 or more pages were migrated
> - * without an error.
> - *
> - * Prepare to migrate a range of memory virtual address range by collecting all
> - * the pages backing each virtual address in the range, saving them inside the
> - * src array.  Then lock those pages and unmap them. Once the pages are locked
> - * and unmapped, check whether each page is pinned or not.  Pages that aren't
> - * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
> - * corresponding src array entry.  Then restores any pages that are pinned, by
> - * remapping and unlocking those pages.
> - *
> - * The caller should then allocate destination memory and copy source memory to
> - * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
> - * flag set).  Once these are allocated and copied, the caller must update each
> - * corresponding entry in the dst array with the pfn value of the destination
> - * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
> - * lock_page().
> - *
> - * Note that the caller does not have to migrate all the pages that are marked
> - * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
> - * device memory to system memory.  If the caller cannot migrate a device page
> - * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
> - * consequences for the userspace process, so it must be avoided if at all
> - * possible.
> - *
> - * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
> - * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
> - * allowing the caller to allocate device memory for those unbacked virtual
> - * addresses.  For this the caller simply has to allocate device memory and
> - * properly set the destination entry like for regular migration.  Note that
> - * this can still fail, and thus inside the device driver you must check if the
> - * migration was successful for those entries after calling migrate_vma_pages(),
> - * just like for regular migration.
> - *
> - * After that, the callers must call migrate_vma_pages() to go over each entry
> - * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
> - * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
> - * then migrate_vma_pages() to migrate struct page information from the source
> - * struct page to the destination struct page.  If it fails to migrate the
> - * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
> - * src array.
> - *
> - * At this point all successfully migrated pages have an entry in the src
> - * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
> - * array entry with MIGRATE_PFN_VALID flag set.
> - *
> - * Once migrate_vma_pages() returns the caller may inspect which pages were
> - * successfully migrated, and which were not.  Successfully migrated pages will
> - * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
> - *
> - * It is safe to update device page table after migrate_vma_pages() because
> - * both destination and source page are still locked, and the mmap_lock is held
> - * in read mode (hence no one can unmap the range being migrated).
> - *
> - * Once the caller is done cleaning up things and updating its page table (if it
> - * chose to do so, this is not an obligation) it finally calls
> - * migrate_vma_finalize() to update the CPU page table to point to new pages
> - * for successfully migrated pages or otherwise restore the CPU page table to
> - * point to the original source pages.
> - */
> -int migrate_vma_setup(struct migrate_vma *args)
> -{
> -	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
> -
> -	args->start &= PAGE_MASK;
> -	args->end &= PAGE_MASK;
> -	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
> -	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
> -		return -EINVAL;
> -	if (nr_pages <= 0)
> -		return -EINVAL;
> -	if (args->start < args->vma->vm_start ||
> -	    args->start >= args->vma->vm_end)
> -		return -EINVAL;
> -	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
> -		return -EINVAL;
> -	if (!args->src || !args->dst)
> -		return -EINVAL;
> -
> -	memset(args->src, 0, sizeof(*args->src) * nr_pages);
> -	args->cpages = 0;
> -	args->npages = 0;
> -
> -	migrate_vma_collect(args);
> -
> -	if (args->cpages)
> -		migrate_vma_unmap(args);
> -
> -	/*
> -	 * At this point pages are locked and unmapped, and thus they have
> -	 * stable content and can safely be copied to destination memory that
> -	 * is allocated by the drivers.
> -	 */
> -	return 0;
> -
> -}
> -EXPORT_SYMBOL(migrate_vma_setup);
> -
> -/*
> - * This code closely matches the code in:
> - *   __handle_mm_fault()
> - *     handle_pte_fault()
> - *       do_anonymous_page()
> - * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
> - * private page.
> - */
> -static void migrate_vma_insert_page(struct migrate_vma *migrate,
> -				    unsigned long addr,
> -				    struct page *page,
> -				    unsigned long *src)
> -{
> -	struct vm_area_struct *vma = migrate->vma;
> -	struct mm_struct *mm = vma->vm_mm;
> -	bool flush = false;
> -	spinlock_t *ptl;
> -	pte_t entry;
> -	pgd_t *pgdp;
> -	p4d_t *p4dp;
> -	pud_t *pudp;
> -	pmd_t *pmdp;
> -	pte_t *ptep;
> -
> -	/* Only allow populating anonymous memory */
> -	if (!vma_is_anonymous(vma))
> -		goto abort;
> -
> -	pgdp = pgd_offset(mm, addr);
> -	p4dp = p4d_alloc(mm, pgdp, addr);
> -	if (!p4dp)
> -		goto abort;
> -	pudp = pud_alloc(mm, p4dp, addr);
> -	if (!pudp)
> -		goto abort;
> -	pmdp = pmd_alloc(mm, pudp, addr);
> -	if (!pmdp)
> -		goto abort;
> -
> -	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
> -		goto abort;
> -
> -	/*
> -	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
> -	 * pte_offset_map() on pmds where a huge pmd might be created
> -	 * from a different thread.
> -	 *
> -	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
> -	 * parallel threads are excluded by other means.
> -	 *
> -	 * Here we only have mmap_read_lock(mm).
> -	 */
> -	if (pte_alloc(mm, pmdp))
> -		goto abort;
> -
> -	/* See the comment in pte_alloc_one_map() */
> -	if (unlikely(pmd_trans_unstable(pmdp)))
> -		goto abort;
> -
> -	if (unlikely(anon_vma_prepare(vma)))
> -		goto abort;
> -	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
> -		goto abort;
> -
> -	/*
> -	 * The memory barrier inside __SetPageUptodate makes sure that
> -	 * preceding stores to the page contents become visible before
> -	 * the set_pte_at() write.
> -	 */
> -	__SetPageUptodate(page);
> -
> -	if (is_device_private_page(page)) {
> -		swp_entry_t swp_entry;
> -
> -		if (vma->vm_flags & VM_WRITE)
> -			swp_entry = make_writable_device_private_entry(
> -						page_to_pfn(page));
> -		else
> -			swp_entry = make_readable_device_private_entry(
> -						page_to_pfn(page));
> -		entry = swp_entry_to_pte(swp_entry);
> -	} else {
> -		/*
> -		 * For now we only support migrating to un-addressable device
> -		 * memory.
> -		 */
> -		if (is_zone_device_page(page)) {
> -			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
> -			goto abort;
> -		}
> -		entry = mk_pte(page, vma->vm_page_prot);
> -		if (vma->vm_flags & VM_WRITE)
> -			entry = pte_mkwrite(pte_mkdirty(entry));
> -	}
> -
> -	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
> -
> -	if (check_stable_address_space(mm))
> -		goto unlock_abort;
> -
> -	if (pte_present(*ptep)) {
> -		unsigned long pfn = pte_pfn(*ptep);
> -
> -		if (!is_zero_pfn(pfn))
> -			goto unlock_abort;
> -		flush = true;
> -	} else if (!pte_none(*ptep))
> -		goto unlock_abort;
> -
> -	/*
> -	 * Check for userfaultfd but do not deliver the fault. Instead,
> -	 * just back off.
> -	 */
> -	if (userfaultfd_missing(vma))
> -		goto unlock_abort;
> -
> -	inc_mm_counter(mm, MM_ANONPAGES);
> -	page_add_new_anon_rmap(page, vma, addr, false);
> -	if (!is_zone_device_page(page))
> -		lru_cache_add_inactive_or_unevictable(page, vma);
> -	get_page(page);
> -
> -	if (flush) {
> -		flush_cache_page(vma, addr, pte_pfn(*ptep));
> -		ptep_clear_flush_notify(vma, addr, ptep);
> -		set_pte_at_notify(mm, addr, ptep, entry);
> -		update_mmu_cache(vma, addr, ptep);
> -	} else {
> -		/* No need to invalidate - it was non-present before */
> -		set_pte_at(mm, addr, ptep, entry);
> -		update_mmu_cache(vma, addr, ptep);
> -	}
> -
> -	pte_unmap_unlock(ptep, ptl);
> -	*src = MIGRATE_PFN_MIGRATE;
> -	return;
> -
> -unlock_abort:
> -	pte_unmap_unlock(ptep, ptl);
> -abort:
> -	*src &= ~MIGRATE_PFN_MIGRATE;
> -}
> -
> -/**
> - * migrate_vma_pages() - migrate meta-data from src page to dst page
> - * @migrate: migrate struct containing all migration information
> - *
> - * This migrates struct page meta-data from source struct page to destination
> - * struct page. This effectively finishes the migration from source page to the
> - * destination page.
> - */
> -void migrate_vma_pages(struct migrate_vma *migrate)
> -{
> -	const unsigned long npages = migrate->npages;
> -	const unsigned long start = migrate->start;
> -	struct mmu_notifier_range range;
> -	unsigned long addr, i;
> -	bool notified = false;
> -
> -	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
> -		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
> -		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> -		struct address_space *mapping;
> -		int r;
> -
> -		if (!newpage) {
> -			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -			continue;
> -		}
> -
> -		if (!page) {
> -			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
> -				continue;
> -			if (!notified) {
> -				notified = true;
> -
> -				mmu_notifier_range_init_owner(&range,
> -					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
> -					migrate->vma->vm_mm, addr, migrate->end,
> -					migrate->pgmap_owner);
> -				mmu_notifier_invalidate_range_start(&range);
> -			}
> -			migrate_vma_insert_page(migrate, addr, newpage,
> -						&migrate->src[i]);
> -			continue;
> -		}
> -
> -		mapping = page_mapping(page);
> -
> -		if (is_device_private_page(newpage)) {
> -			/*
> -			 * For now only support private anonymous when migrating
> -			 * to un-addressable device memory.
> -			 */
> -			if (mapping) {
> -				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -				continue;
> -			}
> -		} else if (is_zone_device_page(newpage)) {
> -			/*
> -			 * Other types of ZONE_DEVICE page are not supported.
> -			 */
> -			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -			continue;
> -		}
> -
> -		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
> -		if (r != MIGRATEPAGE_SUCCESS)
> -			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> -	}
> -
> -	/*
> -	 * No need to double call mmu_notifier->invalidate_range() callback as
> -	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
> -	 * did already call it.
> -	 */
> -	if (notified)
> -		mmu_notifier_invalidate_range_only_end(&range);
> -}
> -EXPORT_SYMBOL(migrate_vma_pages);
> -
> -/**
> - * migrate_vma_finalize() - restore CPU page table entry
> - * @migrate: migrate struct containing all migration information
> - *
> - * This replaces the special migration pte entry with either a mapping to the
> - * new page if migration was successful for that page, or to the original page
> - * otherwise.
> - *
> - * This also unlocks the pages and puts them back on the lru, or drops the extra
> - * refcount, for device pages.
> - */
> -void migrate_vma_finalize(struct migrate_vma *migrate)
> -{
> -	const unsigned long npages = migrate->npages;
> -	unsigned long i;
> -
> -	for (i = 0; i < npages; i++) {
> -		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
> -		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> -
> -		if (!page) {
> -			if (newpage) {
> -				unlock_page(newpage);
> -				put_page(newpage);
> -			}
> -			continue;
> -		}
> -
> -		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
> -			if (newpage) {
> -				unlock_page(newpage);
> -				put_page(newpage);
> -			}
> -			newpage = page;
> -		}
> -
> -		remove_migration_ptes(page, newpage, false);
> -		unlock_page(page);
> -
> -		if (is_zone_device_page(page))
> -			put_page(page);
> -		else
> -			putback_lru_page(page);
> -
> -		if (newpage != page) {
> -			unlock_page(newpage);
> -			if (is_zone_device_page(newpage))
> -				put_page(newpage);
> -			else
> -				putback_lru_page(newpage);
> -		}
> -	}
> -}
> -EXPORT_SYMBOL(migrate_vma_finalize);
> -#endif /* CONFIG_DEVICE_PRIVATE */
> -
>  /*
>   * node_demotion[] example:
>   *
> diff --git a/mm/migrate_device.c b/mm/migrate_device.c
> new file mode 100644
> index 00000000000000..749e0bab8e4779
> --- /dev/null
> +++ b/mm/migrate_device.c
> @@ -0,0 +1,765 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Device Memory Migration functionality.
> + *
> + * Originally written by Jérôme Glisse.
> + */
> +#include <linux/export.h>
> +#include <linux/memremap.h>
> +#include <linux/migrate.h>
> +#include <linux/mm_inline.h>
> +#include <linux/mmu_notifier.h>
> +#include <linux/oom.h>
> +#include <linux/pagewalk.h>
> +#include <linux/rmap.h>
> +#include <linux/swapops.h>
> +#include "internal.h"
> +
> +static int migrate_vma_collect_skip(unsigned long start,
> +				    unsigned long end,
> +				    struct mm_walk *walk)
> +{
> +	struct migrate_vma *migrate = walk->private;
> +	unsigned long addr;
> +
> +	for (addr = start; addr < end; addr += PAGE_SIZE) {
> +		migrate->dst[migrate->npages] = 0;
> +		migrate->src[migrate->npages++] = 0;
> +	}
> +
> +	return 0;
> +}
> +
> +static int migrate_vma_collect_hole(unsigned long start,
> +				    unsigned long end,
> +				    __always_unused int depth,
> +				    struct mm_walk *walk)
> +{
> +	struct migrate_vma *migrate = walk->private;
> +	unsigned long addr;
> +
> +	/* Only allow populating anonymous memory. */
> +	if (!vma_is_anonymous(walk->vma))
> +		return migrate_vma_collect_skip(start, end, walk);
> +
> +	for (addr = start; addr < end; addr += PAGE_SIZE) {
> +		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
> +		migrate->dst[migrate->npages] = 0;
> +		migrate->npages++;
> +		migrate->cpages++;
> +	}
> +
> +	return 0;
> +}
> +
> +static int migrate_vma_collect_pmd(pmd_t *pmdp,
> +				   unsigned long start,
> +				   unsigned long end,
> +				   struct mm_walk *walk)
> +{
> +	struct migrate_vma *migrate = walk->private;
> +	struct vm_area_struct *vma = walk->vma;
> +	struct mm_struct *mm = vma->vm_mm;
> +	unsigned long addr = start, unmapped = 0;
> +	spinlock_t *ptl;
> +	pte_t *ptep;
> +
> +again:
> +	if (pmd_none(*pmdp))
> +		return migrate_vma_collect_hole(start, end, -1, walk);
> +
> +	if (pmd_trans_huge(*pmdp)) {
> +		struct page *page;
> +
> +		ptl = pmd_lock(mm, pmdp);
> +		if (unlikely(!pmd_trans_huge(*pmdp))) {
> +			spin_unlock(ptl);
> +			goto again;
> +		}
> +
> +		page = pmd_page(*pmdp);
> +		if (is_huge_zero_page(page)) {
> +			spin_unlock(ptl);
> +			split_huge_pmd(vma, pmdp, addr);
> +			if (pmd_trans_unstable(pmdp))
> +				return migrate_vma_collect_skip(start, end,
> +								walk);
> +		} else {
> +			int ret;
> +
> +			get_page(page);
> +			spin_unlock(ptl);
> +			if (unlikely(!trylock_page(page)))
> +				return migrate_vma_collect_skip(start, end,
> +								walk);
> +			ret = split_huge_page(page);
> +			unlock_page(page);
> +			put_page(page);
> +			if (ret)
> +				return migrate_vma_collect_skip(start, end,
> +								walk);
> +			if (pmd_none(*pmdp))
> +				return migrate_vma_collect_hole(start, end, -1,
> +								walk);
> +		}
> +	}
> +
> +	if (unlikely(pmd_bad(*pmdp)))
> +		return migrate_vma_collect_skip(start, end, walk);
> +
> +	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
> +	arch_enter_lazy_mmu_mode();
> +
> +	for (; addr < end; addr += PAGE_SIZE, ptep++) {
> +		unsigned long mpfn = 0, pfn;
> +		struct page *page;
> +		swp_entry_t entry;
> +		pte_t pte;
> +
> +		pte = *ptep;
> +
> +		if (pte_none(pte)) {
> +			if (vma_is_anonymous(vma)) {
> +				mpfn = MIGRATE_PFN_MIGRATE;
> +				migrate->cpages++;
> +			}
> +			goto next;
> +		}
> +
> +		if (!pte_present(pte)) {
> +			/*
> +			 * Only care about unaddressable device page special
> +			 * page table entry. Other special swap entries are not
> +			 * migratable, and we ignore regular swapped page.
> +			 */
> +			entry = pte_to_swp_entry(pte);
> +			if (!is_device_private_entry(entry))
> +				goto next;
> +
> +			page = pfn_swap_entry_to_page(entry);
> +			if (!(migrate->flags &
> +				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
> +			    page->pgmap->owner != migrate->pgmap_owner)
> +				goto next;
> +
> +			mpfn = migrate_pfn(page_to_pfn(page)) |
> +					MIGRATE_PFN_MIGRATE;
> +			if (is_writable_device_private_entry(entry))
> +				mpfn |= MIGRATE_PFN_WRITE;
> +		} else {
> +			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
> +				goto next;
> +			pfn = pte_pfn(pte);
> +			if (is_zero_pfn(pfn)) {
> +				mpfn = MIGRATE_PFN_MIGRATE;
> +				migrate->cpages++;
> +				goto next;
> +			}
> +			page = vm_normal_page(migrate->vma, addr, pte);
> +			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
> +			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
> +		}
> +
> +		/* FIXME support THP */
> +		if (!page || !page->mapping || PageTransCompound(page)) {
> +			mpfn = 0;
> +			goto next;
> +		}
> +
> +		/*
> +		 * By getting a reference on the page we pin it and that blocks
> +		 * any kind of migration. Side effect is that it "freezes" the
> +		 * pte.
> +		 *
> +		 * We drop this reference after isolating the page from the lru
> +		 * for non device page (device page are not on the lru and thus
> +		 * can't be dropped from it).
> +		 */
> +		get_page(page);
> +
> +		/*
> +		 * Optimize for the common case where page is only mapped once
> +		 * in one process. If we can lock the page, then we can safely
> +		 * set up a special migration page table entry now.
> +		 */
> +		if (trylock_page(page)) {
> +			pte_t swp_pte;
> +
> +			migrate->cpages++;
> +			ptep_get_and_clear(mm, addr, ptep);
> +
> +			/* Setup special migration page table entry */
> +			if (mpfn & MIGRATE_PFN_WRITE)
> +				entry = make_writable_migration_entry(
> +							page_to_pfn(page));
> +			else
> +				entry = make_readable_migration_entry(
> +							page_to_pfn(page));
> +			swp_pte = swp_entry_to_pte(entry);
> +			if (pte_present(pte)) {
> +				if (pte_soft_dirty(pte))
> +					swp_pte = pte_swp_mksoft_dirty(swp_pte);
> +				if (pte_uffd_wp(pte))
> +					swp_pte = pte_swp_mkuffd_wp(swp_pte);
> +			} else {
> +				if (pte_swp_soft_dirty(pte))
> +					swp_pte = pte_swp_mksoft_dirty(swp_pte);
> +				if (pte_swp_uffd_wp(pte))
> +					swp_pte = pte_swp_mkuffd_wp(swp_pte);
> +			}
> +			set_pte_at(mm, addr, ptep, swp_pte);
> +
> +			/*
> +			 * This is like regular unmap: we remove the rmap and
> +			 * drop page refcount. Page won't be freed, as we took
> +			 * a reference just above.
> +			 */
> +			page_remove_rmap(page, false);
> +			put_page(page);
> +
> +			if (pte_present(pte))
> +				unmapped++;
> +		} else {
> +			put_page(page);
> +			mpfn = 0;
> +		}
> +
> +next:
> +		migrate->dst[migrate->npages] = 0;
> +		migrate->src[migrate->npages++] = mpfn;
> +	}
> +	arch_leave_lazy_mmu_mode();
> +	pte_unmap_unlock(ptep - 1, ptl);
> +
> +	/* Only flush the TLB if we actually modified any entries */
> +	if (unmapped)
> +		flush_tlb_range(walk->vma, start, end);
> +
> +	return 0;
> +}
> +
> +static const struct mm_walk_ops migrate_vma_walk_ops = {
> +	.pmd_entry		= migrate_vma_collect_pmd,
> +	.pte_hole		= migrate_vma_collect_hole,
> +};
> +
> +/*
> + * migrate_vma_collect() - collect pages over a range of virtual addresses
> + * @migrate: migrate struct containing all migration information
> + *
> + * This will walk the CPU page table. For each virtual address backed by a
> + * valid page, it updates the src array and takes a reference on the page, in
> + * order to pin the page until we lock it and unmap it.
> + */
> +static void migrate_vma_collect(struct migrate_vma *migrate)
> +{
> +	struct mmu_notifier_range range;
> +
> +	/*
> +	 * Note that the pgmap_owner is passed to the mmu notifier callback so
> +	 * that the registered device driver can skip invalidating device
> +	 * private page mappings that won't be migrated.
> +	 */
> +	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
> +		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
> +		migrate->pgmap_owner);
> +	mmu_notifier_invalidate_range_start(&range);
> +
> +	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
> +			&migrate_vma_walk_ops, migrate);
> +
> +	mmu_notifier_invalidate_range_end(&range);
> +	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
> +}
> +
> +/*
> + * migrate_vma_check_page() - check if page is pinned or not
> + * @page: struct page to check
> + *
> + * Pinned pages cannot be migrated. This is the same test as in
> + * folio_migrate_mapping(), except that here we allow migration of a
> + * ZONE_DEVICE page.
> + */
> +static bool migrate_vma_check_page(struct page *page)
> +{
> +	/*
> +	 * One extra ref because caller holds an extra reference, either from
> +	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
> +	 * a device page.
> +	 */
> +	int extra = 1;
> +
> +	/*
> +	 * FIXME support THP (transparent huge page), it is bit more complex to
> +	 * check them than regular pages, because they can be mapped with a pmd
> +	 * or with a pte (split pte mapping).
> +	 */
> +	if (PageCompound(page))
> +		return false;
> +
> +	/* Page from ZONE_DEVICE have one extra reference */
> +	if (is_zone_device_page(page))
> +		extra++;
> +
> +	/* For file back page */
> +	if (page_mapping(page))
> +		extra += 1 + page_has_private(page);
> +
> +	if ((page_count(page) - extra) > page_mapcount(page))
> +		return false;
> +
> +	return true;
> +}
> +
> +/*
> + * migrate_vma_unmap() - replace page mapping with special migration pte entry
> + * @migrate: migrate struct containing all migration information
> + *
> + * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
> + * special migration pte entry and check if it has been pinned. Pinned pages are
> + * restored because we cannot migrate them.
> + *
> + * This is the last step before we call the device driver callback to allocate
> + * destination memory and copy contents of original page over to new page.
> + */
> +static void migrate_vma_unmap(struct migrate_vma *migrate)
> +{
> +	const unsigned long npages = migrate->npages;
> +	unsigned long i, restore = 0;
> +	bool allow_drain = true;
> +
> +	lru_add_drain();
> +
> +	for (i = 0; i < npages; i++) {
> +		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> +
> +		if (!page)
> +			continue;
> +
> +		/* ZONE_DEVICE pages are not on LRU */
> +		if (!is_zone_device_page(page)) {
> +			if (!PageLRU(page) && allow_drain) {
> +				/* Drain CPU's pagevec */
> +				lru_add_drain_all();
> +				allow_drain = false;
> +			}
> +
> +			if (isolate_lru_page(page)) {
> +				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +				migrate->cpages--;
> +				restore++;
> +				continue;
> +			}
> +
> +			/* Drop the reference we took in collect */
> +			put_page(page);
> +		}
> +
> +		if (page_mapped(page))
> +			try_to_migrate(page, 0);
> +
> +		if (page_mapped(page) || !migrate_vma_check_page(page)) {
> +			if (!is_zone_device_page(page)) {
> +				get_page(page);
> +				putback_lru_page(page);
> +			}
> +
> +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +			migrate->cpages--;
> +			restore++;
> +			continue;
> +		}
> +	}
> +
> +	for (i = 0; i < npages && restore; i++) {
> +		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> +
> +		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
> +			continue;
> +
> +		remove_migration_ptes(page, page, false);
> +
> +		migrate->src[i] = 0;
> +		unlock_page(page);
> +		put_page(page);
> +		restore--;
> +	}
> +}
> +
> +/**
> + * migrate_vma_setup() - prepare to migrate a range of memory
> + * @args: contains the vma, start, and pfns arrays for the migration
> + *
> + * Returns: negative errno on failures, 0 when 0 or more pages were migrated
> + * without an error.
> + *
> + * Prepare to migrate a range of memory virtual address range by collecting all
> + * the pages backing each virtual address in the range, saving them inside the
> + * src array.  Then lock those pages and unmap them. Once the pages are locked
> + * and unmapped, check whether each page is pinned or not.  Pages that aren't
> + * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
> + * corresponding src array entry.  Then restores any pages that are pinned, by
> + * remapping and unlocking those pages.
> + *
> + * The caller should then allocate destination memory and copy source memory to
> + * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
> + * flag set).  Once these are allocated and copied, the caller must update each
> + * corresponding entry in the dst array with the pfn value of the destination
> + * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
> + * lock_page().
> + *
> + * Note that the caller does not have to migrate all the pages that are marked
> + * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
> + * device memory to system memory.  If the caller cannot migrate a device page
> + * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
> + * consequences for the userspace process, so it must be avoided if at all
> + * possible.
> + *
> + * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
> + * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
> + * allowing the caller to allocate device memory for those unbacked virtual
> + * addresses.  For this the caller simply has to allocate device memory and
> + * properly set the destination entry like for regular migration.  Note that
> + * this can still fail, and thus inside the device driver you must check if the
> + * migration was successful for those entries after calling migrate_vma_pages(),
> + * just like for regular migration.
> + *
> + * After that, the callers must call migrate_vma_pages() to go over each entry
> + * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
> + * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
> + * then migrate_vma_pages() to migrate struct page information from the source
> + * struct page to the destination struct page.  If it fails to migrate the
> + * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
> + * src array.
> + *
> + * At this point all successfully migrated pages have an entry in the src
> + * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
> + * array entry with MIGRATE_PFN_VALID flag set.
> + *
> + * Once migrate_vma_pages() returns the caller may inspect which pages were
> + * successfully migrated, and which were not.  Successfully migrated pages will
> + * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
> + *
> + * It is safe to update device page table after migrate_vma_pages() because
> + * both destination and source page are still locked, and the mmap_lock is held
> + * in read mode (hence no one can unmap the range being migrated).
> + *
> + * Once the caller is done cleaning up things and updating its page table (if it
> + * chose to do so, this is not an obligation) it finally calls
> + * migrate_vma_finalize() to update the CPU page table to point to new pages
> + * for successfully migrated pages or otherwise restore the CPU page table to
> + * point to the original source pages.
> + */
> +int migrate_vma_setup(struct migrate_vma *args)
> +{
> +	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
> +
> +	args->start &= PAGE_MASK;
> +	args->end &= PAGE_MASK;
> +	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
> +	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
> +		return -EINVAL;
> +	if (nr_pages <= 0)
> +		return -EINVAL;
> +	if (args->start < args->vma->vm_start ||
> +	    args->start >= args->vma->vm_end)
> +		return -EINVAL;
> +	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
> +		return -EINVAL;
> +	if (!args->src || !args->dst)
> +		return -EINVAL;
> +
> +	memset(args->src, 0, sizeof(*args->src) * nr_pages);
> +	args->cpages = 0;
> +	args->npages = 0;
> +
> +	migrate_vma_collect(args);
> +
> +	if (args->cpages)
> +		migrate_vma_unmap(args);
> +
> +	/*
> +	 * At this point pages are locked and unmapped, and thus they have
> +	 * stable content and can safely be copied to destination memory that
> +	 * is allocated by the drivers.
> +	 */
> +	return 0;
> +
> +}
> +EXPORT_SYMBOL(migrate_vma_setup);
> +
> +/*
> + * This code closely matches the code in:
> + *   __handle_mm_fault()
> + *     handle_pte_fault()
> + *       do_anonymous_page()
> + * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
> + * private page.
> + */
> +static void migrate_vma_insert_page(struct migrate_vma *migrate,
> +				    unsigned long addr,
> +				    struct page *page,
> +				    unsigned long *src)
> +{
> +	struct vm_area_struct *vma = migrate->vma;
> +	struct mm_struct *mm = vma->vm_mm;
> +	bool flush = false;
> +	spinlock_t *ptl;
> +	pte_t entry;
> +	pgd_t *pgdp;
> +	p4d_t *p4dp;
> +	pud_t *pudp;
> +	pmd_t *pmdp;
> +	pte_t *ptep;
> +
> +	/* Only allow populating anonymous memory */
> +	if (!vma_is_anonymous(vma))
> +		goto abort;
> +
> +	pgdp = pgd_offset(mm, addr);
> +	p4dp = p4d_alloc(mm, pgdp, addr);
> +	if (!p4dp)
> +		goto abort;
> +	pudp = pud_alloc(mm, p4dp, addr);
> +	if (!pudp)
> +		goto abort;
> +	pmdp = pmd_alloc(mm, pudp, addr);
> +	if (!pmdp)
> +		goto abort;
> +
> +	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
> +		goto abort;
> +
> +	/*
> +	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
> +	 * pte_offset_map() on pmds where a huge pmd might be created
> +	 * from a different thread.
> +	 *
> +	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
> +	 * parallel threads are excluded by other means.
> +	 *
> +	 * Here we only have mmap_read_lock(mm).
> +	 */
> +	if (pte_alloc(mm, pmdp))
> +		goto abort;
> +
> +	/* See the comment in pte_alloc_one_map() */
> +	if (unlikely(pmd_trans_unstable(pmdp)))
> +		goto abort;
> +
> +	if (unlikely(anon_vma_prepare(vma)))
> +		goto abort;
> +	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
> +		goto abort;
> +
> +	/*
> +	 * The memory barrier inside __SetPageUptodate makes sure that
> +	 * preceding stores to the page contents become visible before
> +	 * the set_pte_at() write.
> +	 */
> +	__SetPageUptodate(page);
> +
> +	if (is_device_private_page(page)) {
> +		swp_entry_t swp_entry;
> +
> +		if (vma->vm_flags & VM_WRITE)
> +			swp_entry = make_writable_device_private_entry(
> +						page_to_pfn(page));
> +		else
> +			swp_entry = make_readable_device_private_entry(
> +						page_to_pfn(page));
> +		entry = swp_entry_to_pte(swp_entry);
> +	} else {
> +		/*
> +		 * For now we only support migrating to un-addressable device
> +		 * memory.
> +		 */
> +		if (is_zone_device_page(page)) {
> +			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
> +			goto abort;
> +		}
> +		entry = mk_pte(page, vma->vm_page_prot);
> +		if (vma->vm_flags & VM_WRITE)
> +			entry = pte_mkwrite(pte_mkdirty(entry));
> +	}
> +
> +	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
> +
> +	if (check_stable_address_space(mm))
> +		goto unlock_abort;
> +
> +	if (pte_present(*ptep)) {
> +		unsigned long pfn = pte_pfn(*ptep);
> +
> +		if (!is_zero_pfn(pfn))
> +			goto unlock_abort;
> +		flush = true;
> +	} else if (!pte_none(*ptep))
> +		goto unlock_abort;
> +
> +	/*
> +	 * Check for userfaultfd but do not deliver the fault. Instead,
> +	 * just back off.
> +	 */
> +	if (userfaultfd_missing(vma))
> +		goto unlock_abort;
> +
> +	inc_mm_counter(mm, MM_ANONPAGES);
> +	page_add_new_anon_rmap(page, vma, addr, false);
> +	if (!is_zone_device_page(page))
> +		lru_cache_add_inactive_or_unevictable(page, vma);
> +	get_page(page);
> +
> +	if (flush) {
> +		flush_cache_page(vma, addr, pte_pfn(*ptep));
> +		ptep_clear_flush_notify(vma, addr, ptep);
> +		set_pte_at_notify(mm, addr, ptep, entry);
> +		update_mmu_cache(vma, addr, ptep);
> +	} else {
> +		/* No need to invalidate - it was non-present before */
> +		set_pte_at(mm, addr, ptep, entry);
> +		update_mmu_cache(vma, addr, ptep);
> +	}
> +
> +	pte_unmap_unlock(ptep, ptl);
> +	*src = MIGRATE_PFN_MIGRATE;
> +	return;
> +
> +unlock_abort:
> +	pte_unmap_unlock(ptep, ptl);
> +abort:
> +	*src &= ~MIGRATE_PFN_MIGRATE;
> +}
> +
> +/**
> + * migrate_vma_pages() - migrate meta-data from src page to dst page
> + * @migrate: migrate struct containing all migration information
> + *
> + * This migrates struct page meta-data from source struct page to destination
> + * struct page. This effectively finishes the migration from source page to the
> + * destination page.
> + */
> +void migrate_vma_pages(struct migrate_vma *migrate)
> +{
> +	const unsigned long npages = migrate->npages;
> +	const unsigned long start = migrate->start;
> +	struct mmu_notifier_range range;
> +	unsigned long addr, i;
> +	bool notified = false;
> +
> +	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
> +		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
> +		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> +		struct address_space *mapping;
> +		int r;
> +
> +		if (!newpage) {
> +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +			continue;
> +		}
> +
> +		if (!page) {
> +			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
> +				continue;
> +			if (!notified) {
> +				notified = true;
> +
> +				mmu_notifier_range_init_owner(&range,
> +					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
> +					migrate->vma->vm_mm, addr, migrate->end,
> +					migrate->pgmap_owner);
> +				mmu_notifier_invalidate_range_start(&range);
> +			}
> +			migrate_vma_insert_page(migrate, addr, newpage,
> +						&migrate->src[i]);
> +			continue;
> +		}
> +
> +		mapping = page_mapping(page);
> +
> +		if (is_device_private_page(newpage)) {
> +			/*
> +			 * For now only support private anonymous when migrating
> +			 * to un-addressable device memory.
> +			 */
> +			if (mapping) {
> +				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +				continue;
> +			}
> +		} else if (is_zone_device_page(newpage)) {
> +			/*
> +			 * Other types of ZONE_DEVICE page are not supported.
> +			 */
> +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +			continue;
> +		}
> +
> +		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
> +		if (r != MIGRATEPAGE_SUCCESS)
> +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
> +	}
> +
> +	/*
> +	 * No need to double call mmu_notifier->invalidate_range() callback as
> +	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
> +	 * did already call it.
> +	 */
> +	if (notified)
> +		mmu_notifier_invalidate_range_only_end(&range);
> +}
> +EXPORT_SYMBOL(migrate_vma_pages);
> +
> +/**
> + * migrate_vma_finalize() - restore CPU page table entry
> + * @migrate: migrate struct containing all migration information
> + *
> + * This replaces the special migration pte entry with either a mapping to the
> + * new page if migration was successful for that page, or to the original page
> + * otherwise.
> + *
> + * This also unlocks the pages and puts them back on the lru, or drops the extra
> + * refcount, for device pages.
> + */
> +void migrate_vma_finalize(struct migrate_vma *migrate)
> +{
> +	const unsigned long npages = migrate->npages;
> +	unsigned long i;
> +
> +	for (i = 0; i < npages; i++) {
> +		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
> +		struct page *page = migrate_pfn_to_page(migrate->src[i]);
> +
> +		if (!page) {
> +			if (newpage) {
> +				unlock_page(newpage);
> +				put_page(newpage);
> +			}
> +			continue;
> +		}
> +
> +		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
> +			if (newpage) {
> +				unlock_page(newpage);
> +				put_page(newpage);
> +			}
> +			newpage = page;
> +		}
> +
> +		remove_migration_ptes(page, newpage, false);
> +		unlock_page(page);
> +
> +		if (is_zone_device_page(page))
> +			put_page(page);
> +		else
> +			putback_lru_page(page);
> +
> +		if (newpage != page) {
> +			unlock_page(newpage);
> +			if (is_zone_device_page(newpage))
> +				put_page(newpage);
> +			else
> +				putback_lru_page(newpage);
> +		}
> +	}
> +}
> +EXPORT_SYMBOL(migrate_vma_finalize);
>
Christoph Hellwig Feb. 10, 2022, 3:23 p.m. UTC | #2
On Thu, Feb 10, 2022 at 09:35:10PM +1100, Alistair Popple wrote:
> I got the following build error:
> 
> /data/source/linux/mm/migrate_device.c: In function ‘migrate_vma_collect_pmd’:
> /data/source/linux/mm/migrate_device.c:242:3: error: implicit declaration of function ‘flush_tlb_range’; did you mean ‘flush_pmd_tlb_range’? [-Werror=implicit-function-declaration]
>   242 |   flush_tlb_range(walk->vma, start, end);
>       |   ^~~~~~~~~~~~~~~
>       |   flush_pmd_tlb_range
> 
> Including asm/tlbflush.h in migrate_device.c fixed it for me.

Yes, the buildbot also complained about this, but somehow in my test
configfs it got pulled in implicitly.
diff mbox series

Patch

diff --git a/mm/Kconfig b/mm/Kconfig
index a1901ae6d06293..6391d8d3a616f3 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -249,6 +249,9 @@  config MIGRATION
 	  pages as migration can relocate pages to satisfy a huge page
 	  allocation instead of reclaiming.
 
+config DEVICE_MIGRATION
+	def_bool MIGRATION && DEVICE_PRIVATE
+
 config ARCH_ENABLE_HUGEPAGE_MIGRATION
 	bool
 
diff --git a/mm/Makefile b/mm/Makefile
index 70d4309c9ce338..4cc13f3179a518 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -92,6 +92,7 @@  obj-$(CONFIG_KFENCE) += kfence/
 obj-$(CONFIG_FAILSLAB) += failslab.o
 obj-$(CONFIG_MEMTEST)		+= memtest.o
 obj-$(CONFIG_MIGRATION) += migrate.o
+obj-$(CONFIG_DEVICE_MIGRATION) += migrate_device.o
 obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o khugepaged.o
 obj-$(CONFIG_PAGE_COUNTER) += page_counter.o
 obj-$(CONFIG_MEMCG) += memcontrol.o vmpressure.o
diff --git a/mm/migrate.c b/mm/migrate.c
index 746e1230886ddb..c31d04b46a5e17 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -38,12 +38,10 @@ 
 #include <linux/hugetlb.h>
 #include <linux/hugetlb_cgroup.h>
 #include <linux/gfp.h>
-#include <linux/pagewalk.h>
 #include <linux/pfn_t.h>
 #include <linux/memremap.h>
 #include <linux/userfaultfd_k.h>
 #include <linux/balloon_compaction.h>
-#include <linux/mmu_notifier.h>
 #include <linux/page_idle.h>
 #include <linux/page_owner.h>
 #include <linux/sched/mm.h>
@@ -2125,757 +2123,6 @@  int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
 #endif /* CONFIG_NUMA_BALANCING */
 #endif /* CONFIG_NUMA */
 
-#ifdef CONFIG_DEVICE_PRIVATE
-static int migrate_vma_collect_skip(unsigned long start,
-				    unsigned long end,
-				    struct mm_walk *walk)
-{
-	struct migrate_vma *migrate = walk->private;
-	unsigned long addr;
-
-	for (addr = start; addr < end; addr += PAGE_SIZE) {
-		migrate->dst[migrate->npages] = 0;
-		migrate->src[migrate->npages++] = 0;
-	}
-
-	return 0;
-}
-
-static int migrate_vma_collect_hole(unsigned long start,
-				    unsigned long end,
-				    __always_unused int depth,
-				    struct mm_walk *walk)
-{
-	struct migrate_vma *migrate = walk->private;
-	unsigned long addr;
-
-	/* Only allow populating anonymous memory. */
-	if (!vma_is_anonymous(walk->vma))
-		return migrate_vma_collect_skip(start, end, walk);
-
-	for (addr = start; addr < end; addr += PAGE_SIZE) {
-		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
-		migrate->dst[migrate->npages] = 0;
-		migrate->npages++;
-		migrate->cpages++;
-	}
-
-	return 0;
-}
-
-static int migrate_vma_collect_pmd(pmd_t *pmdp,
-				   unsigned long start,
-				   unsigned long end,
-				   struct mm_walk *walk)
-{
-	struct migrate_vma *migrate = walk->private;
-	struct vm_area_struct *vma = walk->vma;
-	struct mm_struct *mm = vma->vm_mm;
-	unsigned long addr = start, unmapped = 0;
-	spinlock_t *ptl;
-	pte_t *ptep;
-
-again:
-	if (pmd_none(*pmdp))
-		return migrate_vma_collect_hole(start, end, -1, walk);
-
-	if (pmd_trans_huge(*pmdp)) {
-		struct page *page;
-
-		ptl = pmd_lock(mm, pmdp);
-		if (unlikely(!pmd_trans_huge(*pmdp))) {
-			spin_unlock(ptl);
-			goto again;
-		}
-
-		page = pmd_page(*pmdp);
-		if (is_huge_zero_page(page)) {
-			spin_unlock(ptl);
-			split_huge_pmd(vma, pmdp, addr);
-			if (pmd_trans_unstable(pmdp))
-				return migrate_vma_collect_skip(start, end,
-								walk);
-		} else {
-			int ret;
-
-			get_page(page);
-			spin_unlock(ptl);
-			if (unlikely(!trylock_page(page)))
-				return migrate_vma_collect_skip(start, end,
-								walk);
-			ret = split_huge_page(page);
-			unlock_page(page);
-			put_page(page);
-			if (ret)
-				return migrate_vma_collect_skip(start, end,
-								walk);
-			if (pmd_none(*pmdp))
-				return migrate_vma_collect_hole(start, end, -1,
-								walk);
-		}
-	}
-
-	if (unlikely(pmd_bad(*pmdp)))
-		return migrate_vma_collect_skip(start, end, walk);
-
-	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
-	arch_enter_lazy_mmu_mode();
-
-	for (; addr < end; addr += PAGE_SIZE, ptep++) {
-		unsigned long mpfn = 0, pfn;
-		struct page *page;
-		swp_entry_t entry;
-		pte_t pte;
-
-		pte = *ptep;
-
-		if (pte_none(pte)) {
-			if (vma_is_anonymous(vma)) {
-				mpfn = MIGRATE_PFN_MIGRATE;
-				migrate->cpages++;
-			}
-			goto next;
-		}
-
-		if (!pte_present(pte)) {
-			/*
-			 * Only care about unaddressable device page special
-			 * page table entry. Other special swap entries are not
-			 * migratable, and we ignore regular swapped page.
-			 */
-			entry = pte_to_swp_entry(pte);
-			if (!is_device_private_entry(entry))
-				goto next;
-
-			page = pfn_swap_entry_to_page(entry);
-			if (!(migrate->flags &
-				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
-			    page->pgmap->owner != migrate->pgmap_owner)
-				goto next;
-
-			mpfn = migrate_pfn(page_to_pfn(page)) |
-					MIGRATE_PFN_MIGRATE;
-			if (is_writable_device_private_entry(entry))
-				mpfn |= MIGRATE_PFN_WRITE;
-		} else {
-			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
-				goto next;
-			pfn = pte_pfn(pte);
-			if (is_zero_pfn(pfn)) {
-				mpfn = MIGRATE_PFN_MIGRATE;
-				migrate->cpages++;
-				goto next;
-			}
-			page = vm_normal_page(migrate->vma, addr, pte);
-			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
-			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
-		}
-
-		/* FIXME support THP */
-		if (!page || !page->mapping || PageTransCompound(page)) {
-			mpfn = 0;
-			goto next;
-		}
-
-		/*
-		 * By getting a reference on the page we pin it and that blocks
-		 * any kind of migration. Side effect is that it "freezes" the
-		 * pte.
-		 *
-		 * We drop this reference after isolating the page from the lru
-		 * for non device page (device page are not on the lru and thus
-		 * can't be dropped from it).
-		 */
-		get_page(page);
-
-		/*
-		 * Optimize for the common case where page is only mapped once
-		 * in one process. If we can lock the page, then we can safely
-		 * set up a special migration page table entry now.
-		 */
-		if (trylock_page(page)) {
-			pte_t swp_pte;
-
-			migrate->cpages++;
-			ptep_get_and_clear(mm, addr, ptep);
-
-			/* Setup special migration page table entry */
-			if (mpfn & MIGRATE_PFN_WRITE)
-				entry = make_writable_migration_entry(
-							page_to_pfn(page));
-			else
-				entry = make_readable_migration_entry(
-							page_to_pfn(page));
-			swp_pte = swp_entry_to_pte(entry);
-			if (pte_present(pte)) {
-				if (pte_soft_dirty(pte))
-					swp_pte = pte_swp_mksoft_dirty(swp_pte);
-				if (pte_uffd_wp(pte))
-					swp_pte = pte_swp_mkuffd_wp(swp_pte);
-			} else {
-				if (pte_swp_soft_dirty(pte))
-					swp_pte = pte_swp_mksoft_dirty(swp_pte);
-				if (pte_swp_uffd_wp(pte))
-					swp_pte = pte_swp_mkuffd_wp(swp_pte);
-			}
-			set_pte_at(mm, addr, ptep, swp_pte);
-
-			/*
-			 * This is like regular unmap: we remove the rmap and
-			 * drop page refcount. Page won't be freed, as we took
-			 * a reference just above.
-			 */
-			page_remove_rmap(page, false);
-			put_page(page);
-
-			if (pte_present(pte))
-				unmapped++;
-		} else {
-			put_page(page);
-			mpfn = 0;
-		}
-
-next:
-		migrate->dst[migrate->npages] = 0;
-		migrate->src[migrate->npages++] = mpfn;
-	}
-	arch_leave_lazy_mmu_mode();
-	pte_unmap_unlock(ptep - 1, ptl);
-
-	/* Only flush the TLB if we actually modified any entries */
-	if (unmapped)
-		flush_tlb_range(walk->vma, start, end);
-
-	return 0;
-}
-
-static const struct mm_walk_ops migrate_vma_walk_ops = {
-	.pmd_entry		= migrate_vma_collect_pmd,
-	.pte_hole		= migrate_vma_collect_hole,
-};
-
-/*
- * migrate_vma_collect() - collect pages over a range of virtual addresses
- * @migrate: migrate struct containing all migration information
- *
- * This will walk the CPU page table. For each virtual address backed by a
- * valid page, it updates the src array and takes a reference on the page, in
- * order to pin the page until we lock it and unmap it.
- */
-static void migrate_vma_collect(struct migrate_vma *migrate)
-{
-	struct mmu_notifier_range range;
-
-	/*
-	 * Note that the pgmap_owner is passed to the mmu notifier callback so
-	 * that the registered device driver can skip invalidating device
-	 * private page mappings that won't be migrated.
-	 */
-	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
-		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
-		migrate->pgmap_owner);
-	mmu_notifier_invalidate_range_start(&range);
-
-	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
-			&migrate_vma_walk_ops, migrate);
-
-	mmu_notifier_invalidate_range_end(&range);
-	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
-}
-
-/*
- * migrate_vma_check_page() - check if page is pinned or not
- * @page: struct page to check
- *
- * Pinned pages cannot be migrated. This is the same test as in
- * folio_migrate_mapping(), except that here we allow migration of a
- * ZONE_DEVICE page.
- */
-static bool migrate_vma_check_page(struct page *page)
-{
-	/*
-	 * One extra ref because caller holds an extra reference, either from
-	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
-	 * a device page.
-	 */
-	int extra = 1;
-
-	/*
-	 * FIXME support THP (transparent huge page), it is bit more complex to
-	 * check them than regular pages, because they can be mapped with a pmd
-	 * or with a pte (split pte mapping).
-	 */
-	if (PageCompound(page))
-		return false;
-
-	/* Page from ZONE_DEVICE have one extra reference */
-	if (is_zone_device_page(page))
-		extra++;
-
-	/* For file back page */
-	if (page_mapping(page))
-		extra += 1 + page_has_private(page);
-
-	if ((page_count(page) - extra) > page_mapcount(page))
-		return false;
-
-	return true;
-}
-
-/*
- * migrate_vma_unmap() - replace page mapping with special migration pte entry
- * @migrate: migrate struct containing all migration information
- *
- * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
- * special migration pte entry and check if it has been pinned. Pinned pages are
- * restored because we cannot migrate them.
- *
- * This is the last step before we call the device driver callback to allocate
- * destination memory and copy contents of original page over to new page.
- */
-static void migrate_vma_unmap(struct migrate_vma *migrate)
-{
-	const unsigned long npages = migrate->npages;
-	unsigned long i, restore = 0;
-	bool allow_drain = true;
-
-	lru_add_drain();
-
-	for (i = 0; i < npages; i++) {
-		struct page *page = migrate_pfn_to_page(migrate->src[i]);
-
-		if (!page)
-			continue;
-
-		/* ZONE_DEVICE pages are not on LRU */
-		if (!is_zone_device_page(page)) {
-			if (!PageLRU(page) && allow_drain) {
-				/* Drain CPU's pagevec */
-				lru_add_drain_all();
-				allow_drain = false;
-			}
-
-			if (isolate_lru_page(page)) {
-				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-				migrate->cpages--;
-				restore++;
-				continue;
-			}
-
-			/* Drop the reference we took in collect */
-			put_page(page);
-		}
-
-		if (page_mapped(page))
-			try_to_migrate(page, 0);
-
-		if (page_mapped(page) || !migrate_vma_check_page(page)) {
-			if (!is_zone_device_page(page)) {
-				get_page(page);
-				putback_lru_page(page);
-			}
-
-			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-			migrate->cpages--;
-			restore++;
-			continue;
-		}
-	}
-
-	for (i = 0; i < npages && restore; i++) {
-		struct page *page = migrate_pfn_to_page(migrate->src[i]);
-
-		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
-			continue;
-
-		remove_migration_ptes(page, page, false);
-
-		migrate->src[i] = 0;
-		unlock_page(page);
-		put_page(page);
-		restore--;
-	}
-}
-
-/**
- * migrate_vma_setup() - prepare to migrate a range of memory
- * @args: contains the vma, start, and pfns arrays for the migration
- *
- * Returns: negative errno on failures, 0 when 0 or more pages were migrated
- * without an error.
- *
- * Prepare to migrate a range of memory virtual address range by collecting all
- * the pages backing each virtual address in the range, saving them inside the
- * src array.  Then lock those pages and unmap them. Once the pages are locked
- * and unmapped, check whether each page is pinned or not.  Pages that aren't
- * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
- * corresponding src array entry.  Then restores any pages that are pinned, by
- * remapping and unlocking those pages.
- *
- * The caller should then allocate destination memory and copy source memory to
- * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
- * flag set).  Once these are allocated and copied, the caller must update each
- * corresponding entry in the dst array with the pfn value of the destination
- * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
- * lock_page().
- *
- * Note that the caller does not have to migrate all the pages that are marked
- * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
- * device memory to system memory.  If the caller cannot migrate a device page
- * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
- * consequences for the userspace process, so it must be avoided if at all
- * possible.
- *
- * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
- * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
- * allowing the caller to allocate device memory for those unbacked virtual
- * addresses.  For this the caller simply has to allocate device memory and
- * properly set the destination entry like for regular migration.  Note that
- * this can still fail, and thus inside the device driver you must check if the
- * migration was successful for those entries after calling migrate_vma_pages(),
- * just like for regular migration.
- *
- * After that, the callers must call migrate_vma_pages() to go over each entry
- * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
- * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
- * then migrate_vma_pages() to migrate struct page information from the source
- * struct page to the destination struct page.  If it fails to migrate the
- * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
- * src array.
- *
- * At this point all successfully migrated pages have an entry in the src
- * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
- * array entry with MIGRATE_PFN_VALID flag set.
- *
- * Once migrate_vma_pages() returns the caller may inspect which pages were
- * successfully migrated, and which were not.  Successfully migrated pages will
- * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
- *
- * It is safe to update device page table after migrate_vma_pages() because
- * both destination and source page are still locked, and the mmap_lock is held
- * in read mode (hence no one can unmap the range being migrated).
- *
- * Once the caller is done cleaning up things and updating its page table (if it
- * chose to do so, this is not an obligation) it finally calls
- * migrate_vma_finalize() to update the CPU page table to point to new pages
- * for successfully migrated pages or otherwise restore the CPU page table to
- * point to the original source pages.
- */
-int migrate_vma_setup(struct migrate_vma *args)
-{
-	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
-
-	args->start &= PAGE_MASK;
-	args->end &= PAGE_MASK;
-	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
-	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
-		return -EINVAL;
-	if (nr_pages <= 0)
-		return -EINVAL;
-	if (args->start < args->vma->vm_start ||
-	    args->start >= args->vma->vm_end)
-		return -EINVAL;
-	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
-		return -EINVAL;
-	if (!args->src || !args->dst)
-		return -EINVAL;
-
-	memset(args->src, 0, sizeof(*args->src) * nr_pages);
-	args->cpages = 0;
-	args->npages = 0;
-
-	migrate_vma_collect(args);
-
-	if (args->cpages)
-		migrate_vma_unmap(args);
-
-	/*
-	 * At this point pages are locked and unmapped, and thus they have
-	 * stable content and can safely be copied to destination memory that
-	 * is allocated by the drivers.
-	 */
-	return 0;
-
-}
-EXPORT_SYMBOL(migrate_vma_setup);
-
-/*
- * This code closely matches the code in:
- *   __handle_mm_fault()
- *     handle_pte_fault()
- *       do_anonymous_page()
- * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
- * private page.
- */
-static void migrate_vma_insert_page(struct migrate_vma *migrate,
-				    unsigned long addr,
-				    struct page *page,
-				    unsigned long *src)
-{
-	struct vm_area_struct *vma = migrate->vma;
-	struct mm_struct *mm = vma->vm_mm;
-	bool flush = false;
-	spinlock_t *ptl;
-	pte_t entry;
-	pgd_t *pgdp;
-	p4d_t *p4dp;
-	pud_t *pudp;
-	pmd_t *pmdp;
-	pte_t *ptep;
-
-	/* Only allow populating anonymous memory */
-	if (!vma_is_anonymous(vma))
-		goto abort;
-
-	pgdp = pgd_offset(mm, addr);
-	p4dp = p4d_alloc(mm, pgdp, addr);
-	if (!p4dp)
-		goto abort;
-	pudp = pud_alloc(mm, p4dp, addr);
-	if (!pudp)
-		goto abort;
-	pmdp = pmd_alloc(mm, pudp, addr);
-	if (!pmdp)
-		goto abort;
-
-	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
-		goto abort;
-
-	/*
-	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
-	 * pte_offset_map() on pmds where a huge pmd might be created
-	 * from a different thread.
-	 *
-	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
-	 * parallel threads are excluded by other means.
-	 *
-	 * Here we only have mmap_read_lock(mm).
-	 */
-	if (pte_alloc(mm, pmdp))
-		goto abort;
-
-	/* See the comment in pte_alloc_one_map() */
-	if (unlikely(pmd_trans_unstable(pmdp)))
-		goto abort;
-
-	if (unlikely(anon_vma_prepare(vma)))
-		goto abort;
-	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
-		goto abort;
-
-	/*
-	 * The memory barrier inside __SetPageUptodate makes sure that
-	 * preceding stores to the page contents become visible before
-	 * the set_pte_at() write.
-	 */
-	__SetPageUptodate(page);
-
-	if (is_device_private_page(page)) {
-		swp_entry_t swp_entry;
-
-		if (vma->vm_flags & VM_WRITE)
-			swp_entry = make_writable_device_private_entry(
-						page_to_pfn(page));
-		else
-			swp_entry = make_readable_device_private_entry(
-						page_to_pfn(page));
-		entry = swp_entry_to_pte(swp_entry);
-	} else {
-		/*
-		 * For now we only support migrating to un-addressable device
-		 * memory.
-		 */
-		if (is_zone_device_page(page)) {
-			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
-			goto abort;
-		}
-		entry = mk_pte(page, vma->vm_page_prot);
-		if (vma->vm_flags & VM_WRITE)
-			entry = pte_mkwrite(pte_mkdirty(entry));
-	}
-
-	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
-
-	if (check_stable_address_space(mm))
-		goto unlock_abort;
-
-	if (pte_present(*ptep)) {
-		unsigned long pfn = pte_pfn(*ptep);
-
-		if (!is_zero_pfn(pfn))
-			goto unlock_abort;
-		flush = true;
-	} else if (!pte_none(*ptep))
-		goto unlock_abort;
-
-	/*
-	 * Check for userfaultfd but do not deliver the fault. Instead,
-	 * just back off.
-	 */
-	if (userfaultfd_missing(vma))
-		goto unlock_abort;
-
-	inc_mm_counter(mm, MM_ANONPAGES);
-	page_add_new_anon_rmap(page, vma, addr, false);
-	if (!is_zone_device_page(page))
-		lru_cache_add_inactive_or_unevictable(page, vma);
-	get_page(page);
-
-	if (flush) {
-		flush_cache_page(vma, addr, pte_pfn(*ptep));
-		ptep_clear_flush_notify(vma, addr, ptep);
-		set_pte_at_notify(mm, addr, ptep, entry);
-		update_mmu_cache(vma, addr, ptep);
-	} else {
-		/* No need to invalidate - it was non-present before */
-		set_pte_at(mm, addr, ptep, entry);
-		update_mmu_cache(vma, addr, ptep);
-	}
-
-	pte_unmap_unlock(ptep, ptl);
-	*src = MIGRATE_PFN_MIGRATE;
-	return;
-
-unlock_abort:
-	pte_unmap_unlock(ptep, ptl);
-abort:
-	*src &= ~MIGRATE_PFN_MIGRATE;
-}
-
-/**
- * migrate_vma_pages() - migrate meta-data from src page to dst page
- * @migrate: migrate struct containing all migration information
- *
- * This migrates struct page meta-data from source struct page to destination
- * struct page. This effectively finishes the migration from source page to the
- * destination page.
- */
-void migrate_vma_pages(struct migrate_vma *migrate)
-{
-	const unsigned long npages = migrate->npages;
-	const unsigned long start = migrate->start;
-	struct mmu_notifier_range range;
-	unsigned long addr, i;
-	bool notified = false;
-
-	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
-		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
-		struct page *page = migrate_pfn_to_page(migrate->src[i]);
-		struct address_space *mapping;
-		int r;
-
-		if (!newpage) {
-			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-			continue;
-		}
-
-		if (!page) {
-			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
-				continue;
-			if (!notified) {
-				notified = true;
-
-				mmu_notifier_range_init_owner(&range,
-					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
-					migrate->vma->vm_mm, addr, migrate->end,
-					migrate->pgmap_owner);
-				mmu_notifier_invalidate_range_start(&range);
-			}
-			migrate_vma_insert_page(migrate, addr, newpage,
-						&migrate->src[i]);
-			continue;
-		}
-
-		mapping = page_mapping(page);
-
-		if (is_device_private_page(newpage)) {
-			/*
-			 * For now only support private anonymous when migrating
-			 * to un-addressable device memory.
-			 */
-			if (mapping) {
-				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-				continue;
-			}
-		} else if (is_zone_device_page(newpage)) {
-			/*
-			 * Other types of ZONE_DEVICE page are not supported.
-			 */
-			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-			continue;
-		}
-
-		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
-		if (r != MIGRATEPAGE_SUCCESS)
-			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
-	}
-
-	/*
-	 * No need to double call mmu_notifier->invalidate_range() callback as
-	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
-	 * did already call it.
-	 */
-	if (notified)
-		mmu_notifier_invalidate_range_only_end(&range);
-}
-EXPORT_SYMBOL(migrate_vma_pages);
-
-/**
- * migrate_vma_finalize() - restore CPU page table entry
- * @migrate: migrate struct containing all migration information
- *
- * This replaces the special migration pte entry with either a mapping to the
- * new page if migration was successful for that page, or to the original page
- * otherwise.
- *
- * This also unlocks the pages and puts them back on the lru, or drops the extra
- * refcount, for device pages.
- */
-void migrate_vma_finalize(struct migrate_vma *migrate)
-{
-	const unsigned long npages = migrate->npages;
-	unsigned long i;
-
-	for (i = 0; i < npages; i++) {
-		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
-		struct page *page = migrate_pfn_to_page(migrate->src[i]);
-
-		if (!page) {
-			if (newpage) {
-				unlock_page(newpage);
-				put_page(newpage);
-			}
-			continue;
-		}
-
-		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
-			if (newpage) {
-				unlock_page(newpage);
-				put_page(newpage);
-			}
-			newpage = page;
-		}
-
-		remove_migration_ptes(page, newpage, false);
-		unlock_page(page);
-
-		if (is_zone_device_page(page))
-			put_page(page);
-		else
-			putback_lru_page(page);
-
-		if (newpage != page) {
-			unlock_page(newpage);
-			if (is_zone_device_page(newpage))
-				put_page(newpage);
-			else
-				putback_lru_page(newpage);
-		}
-	}
-}
-EXPORT_SYMBOL(migrate_vma_finalize);
-#endif /* CONFIG_DEVICE_PRIVATE */
-
 /*
  * node_demotion[] example:
  *
diff --git a/mm/migrate_device.c b/mm/migrate_device.c
new file mode 100644
index 00000000000000..749e0bab8e4779
--- /dev/null
+++ b/mm/migrate_device.c
@@ -0,0 +1,765 @@ 
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Device Memory Migration functionality.
+ *
+ * Originally written by Jérôme Glisse.
+ */
+#include <linux/export.h>
+#include <linux/memremap.h>
+#include <linux/migrate.h>
+#include <linux/mm_inline.h>
+#include <linux/mmu_notifier.h>
+#include <linux/oom.h>
+#include <linux/pagewalk.h>
+#include <linux/rmap.h>
+#include <linux/swapops.h>
+#include "internal.h"
+
+static int migrate_vma_collect_skip(unsigned long start,
+				    unsigned long end,
+				    struct mm_walk *walk)
+{
+	struct migrate_vma *migrate = walk->private;
+	unsigned long addr;
+
+	for (addr = start; addr < end; addr += PAGE_SIZE) {
+		migrate->dst[migrate->npages] = 0;
+		migrate->src[migrate->npages++] = 0;
+	}
+
+	return 0;
+}
+
+static int migrate_vma_collect_hole(unsigned long start,
+				    unsigned long end,
+				    __always_unused int depth,
+				    struct mm_walk *walk)
+{
+	struct migrate_vma *migrate = walk->private;
+	unsigned long addr;
+
+	/* Only allow populating anonymous memory. */
+	if (!vma_is_anonymous(walk->vma))
+		return migrate_vma_collect_skip(start, end, walk);
+
+	for (addr = start; addr < end; addr += PAGE_SIZE) {
+		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
+		migrate->dst[migrate->npages] = 0;
+		migrate->npages++;
+		migrate->cpages++;
+	}
+
+	return 0;
+}
+
+static int migrate_vma_collect_pmd(pmd_t *pmdp,
+				   unsigned long start,
+				   unsigned long end,
+				   struct mm_walk *walk)
+{
+	struct migrate_vma *migrate = walk->private;
+	struct vm_area_struct *vma = walk->vma;
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long addr = start, unmapped = 0;
+	spinlock_t *ptl;
+	pte_t *ptep;
+
+again:
+	if (pmd_none(*pmdp))
+		return migrate_vma_collect_hole(start, end, -1, walk);
+
+	if (pmd_trans_huge(*pmdp)) {
+		struct page *page;
+
+		ptl = pmd_lock(mm, pmdp);
+		if (unlikely(!pmd_trans_huge(*pmdp))) {
+			spin_unlock(ptl);
+			goto again;
+		}
+
+		page = pmd_page(*pmdp);
+		if (is_huge_zero_page(page)) {
+			spin_unlock(ptl);
+			split_huge_pmd(vma, pmdp, addr);
+			if (pmd_trans_unstable(pmdp))
+				return migrate_vma_collect_skip(start, end,
+								walk);
+		} else {
+			int ret;
+
+			get_page(page);
+			spin_unlock(ptl);
+			if (unlikely(!trylock_page(page)))
+				return migrate_vma_collect_skip(start, end,
+								walk);
+			ret = split_huge_page(page);
+			unlock_page(page);
+			put_page(page);
+			if (ret)
+				return migrate_vma_collect_skip(start, end,
+								walk);
+			if (pmd_none(*pmdp))
+				return migrate_vma_collect_hole(start, end, -1,
+								walk);
+		}
+	}
+
+	if (unlikely(pmd_bad(*pmdp)))
+		return migrate_vma_collect_skip(start, end, walk);
+
+	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
+	arch_enter_lazy_mmu_mode();
+
+	for (; addr < end; addr += PAGE_SIZE, ptep++) {
+		unsigned long mpfn = 0, pfn;
+		struct page *page;
+		swp_entry_t entry;
+		pte_t pte;
+
+		pte = *ptep;
+
+		if (pte_none(pte)) {
+			if (vma_is_anonymous(vma)) {
+				mpfn = MIGRATE_PFN_MIGRATE;
+				migrate->cpages++;
+			}
+			goto next;
+		}
+
+		if (!pte_present(pte)) {
+			/*
+			 * Only care about unaddressable device page special
+			 * page table entry. Other special swap entries are not
+			 * migratable, and we ignore regular swapped page.
+			 */
+			entry = pte_to_swp_entry(pte);
+			if (!is_device_private_entry(entry))
+				goto next;
+
+			page = pfn_swap_entry_to_page(entry);
+			if (!(migrate->flags &
+				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
+			    page->pgmap->owner != migrate->pgmap_owner)
+				goto next;
+
+			mpfn = migrate_pfn(page_to_pfn(page)) |
+					MIGRATE_PFN_MIGRATE;
+			if (is_writable_device_private_entry(entry))
+				mpfn |= MIGRATE_PFN_WRITE;
+		} else {
+			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
+				goto next;
+			pfn = pte_pfn(pte);
+			if (is_zero_pfn(pfn)) {
+				mpfn = MIGRATE_PFN_MIGRATE;
+				migrate->cpages++;
+				goto next;
+			}
+			page = vm_normal_page(migrate->vma, addr, pte);
+			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
+			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
+		}
+
+		/* FIXME support THP */
+		if (!page || !page->mapping || PageTransCompound(page)) {
+			mpfn = 0;
+			goto next;
+		}
+
+		/*
+		 * By getting a reference on the page we pin it and that blocks
+		 * any kind of migration. Side effect is that it "freezes" the
+		 * pte.
+		 *
+		 * We drop this reference after isolating the page from the lru
+		 * for non device page (device page are not on the lru and thus
+		 * can't be dropped from it).
+		 */
+		get_page(page);
+
+		/*
+		 * Optimize for the common case where page is only mapped once
+		 * in one process. If we can lock the page, then we can safely
+		 * set up a special migration page table entry now.
+		 */
+		if (trylock_page(page)) {
+			pte_t swp_pte;
+
+			migrate->cpages++;
+			ptep_get_and_clear(mm, addr, ptep);
+
+			/* Setup special migration page table entry */
+			if (mpfn & MIGRATE_PFN_WRITE)
+				entry = make_writable_migration_entry(
+							page_to_pfn(page));
+			else
+				entry = make_readable_migration_entry(
+							page_to_pfn(page));
+			swp_pte = swp_entry_to_pte(entry);
+			if (pte_present(pte)) {
+				if (pte_soft_dirty(pte))
+					swp_pte = pte_swp_mksoft_dirty(swp_pte);
+				if (pte_uffd_wp(pte))
+					swp_pte = pte_swp_mkuffd_wp(swp_pte);
+			} else {
+				if (pte_swp_soft_dirty(pte))
+					swp_pte = pte_swp_mksoft_dirty(swp_pte);
+				if (pte_swp_uffd_wp(pte))
+					swp_pte = pte_swp_mkuffd_wp(swp_pte);
+			}
+			set_pte_at(mm, addr, ptep, swp_pte);
+
+			/*
+			 * This is like regular unmap: we remove the rmap and
+			 * drop page refcount. Page won't be freed, as we took
+			 * a reference just above.
+			 */
+			page_remove_rmap(page, false);
+			put_page(page);
+
+			if (pte_present(pte))
+				unmapped++;
+		} else {
+			put_page(page);
+			mpfn = 0;
+		}
+
+next:
+		migrate->dst[migrate->npages] = 0;
+		migrate->src[migrate->npages++] = mpfn;
+	}
+	arch_leave_lazy_mmu_mode();
+	pte_unmap_unlock(ptep - 1, ptl);
+
+	/* Only flush the TLB if we actually modified any entries */
+	if (unmapped)
+		flush_tlb_range(walk->vma, start, end);
+
+	return 0;
+}
+
+static const struct mm_walk_ops migrate_vma_walk_ops = {
+	.pmd_entry		= migrate_vma_collect_pmd,
+	.pte_hole		= migrate_vma_collect_hole,
+};
+
+/*
+ * migrate_vma_collect() - collect pages over a range of virtual addresses
+ * @migrate: migrate struct containing all migration information
+ *
+ * This will walk the CPU page table. For each virtual address backed by a
+ * valid page, it updates the src array and takes a reference on the page, in
+ * order to pin the page until we lock it and unmap it.
+ */
+static void migrate_vma_collect(struct migrate_vma *migrate)
+{
+	struct mmu_notifier_range range;
+
+	/*
+	 * Note that the pgmap_owner is passed to the mmu notifier callback so
+	 * that the registered device driver can skip invalidating device
+	 * private page mappings that won't be migrated.
+	 */
+	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
+		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
+		migrate->pgmap_owner);
+	mmu_notifier_invalidate_range_start(&range);
+
+	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
+			&migrate_vma_walk_ops, migrate);
+
+	mmu_notifier_invalidate_range_end(&range);
+	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
+}
+
+/*
+ * migrate_vma_check_page() - check if page is pinned or not
+ * @page: struct page to check
+ *
+ * Pinned pages cannot be migrated. This is the same test as in
+ * folio_migrate_mapping(), except that here we allow migration of a
+ * ZONE_DEVICE page.
+ */
+static bool migrate_vma_check_page(struct page *page)
+{
+	/*
+	 * One extra ref because caller holds an extra reference, either from
+	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
+	 * a device page.
+	 */
+	int extra = 1;
+
+	/*
+	 * FIXME support THP (transparent huge page), it is bit more complex to
+	 * check them than regular pages, because they can be mapped with a pmd
+	 * or with a pte (split pte mapping).
+	 */
+	if (PageCompound(page))
+		return false;
+
+	/* Page from ZONE_DEVICE have one extra reference */
+	if (is_zone_device_page(page))
+		extra++;
+
+	/* For file back page */
+	if (page_mapping(page))
+		extra += 1 + page_has_private(page);
+
+	if ((page_count(page) - extra) > page_mapcount(page))
+		return false;
+
+	return true;
+}
+
+/*
+ * migrate_vma_unmap() - replace page mapping with special migration pte entry
+ * @migrate: migrate struct containing all migration information
+ *
+ * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
+ * special migration pte entry and check if it has been pinned. Pinned pages are
+ * restored because we cannot migrate them.
+ *
+ * This is the last step before we call the device driver callback to allocate
+ * destination memory and copy contents of original page over to new page.
+ */
+static void migrate_vma_unmap(struct migrate_vma *migrate)
+{
+	const unsigned long npages = migrate->npages;
+	unsigned long i, restore = 0;
+	bool allow_drain = true;
+
+	lru_add_drain();
+
+	for (i = 0; i < npages; i++) {
+		struct page *page = migrate_pfn_to_page(migrate->src[i]);
+
+		if (!page)
+			continue;
+
+		/* ZONE_DEVICE pages are not on LRU */
+		if (!is_zone_device_page(page)) {
+			if (!PageLRU(page) && allow_drain) {
+				/* Drain CPU's pagevec */
+				lru_add_drain_all();
+				allow_drain = false;
+			}
+
+			if (isolate_lru_page(page)) {
+				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+				migrate->cpages--;
+				restore++;
+				continue;
+			}
+
+			/* Drop the reference we took in collect */
+			put_page(page);
+		}
+
+		if (page_mapped(page))
+			try_to_migrate(page, 0);
+
+		if (page_mapped(page) || !migrate_vma_check_page(page)) {
+			if (!is_zone_device_page(page)) {
+				get_page(page);
+				putback_lru_page(page);
+			}
+
+			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+			migrate->cpages--;
+			restore++;
+			continue;
+		}
+	}
+
+	for (i = 0; i < npages && restore; i++) {
+		struct page *page = migrate_pfn_to_page(migrate->src[i]);
+
+		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
+			continue;
+
+		remove_migration_ptes(page, page, false);
+
+		migrate->src[i] = 0;
+		unlock_page(page);
+		put_page(page);
+		restore--;
+	}
+}
+
+/**
+ * migrate_vma_setup() - prepare to migrate a range of memory
+ * @args: contains the vma, start, and pfns arrays for the migration
+ *
+ * Returns: negative errno on failures, 0 when 0 or more pages were migrated
+ * without an error.
+ *
+ * Prepare to migrate a range of memory virtual address range by collecting all
+ * the pages backing each virtual address in the range, saving them inside the
+ * src array.  Then lock those pages and unmap them. Once the pages are locked
+ * and unmapped, check whether each page is pinned or not.  Pages that aren't
+ * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
+ * corresponding src array entry.  Then restores any pages that are pinned, by
+ * remapping and unlocking those pages.
+ *
+ * The caller should then allocate destination memory and copy source memory to
+ * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
+ * flag set).  Once these are allocated and copied, the caller must update each
+ * corresponding entry in the dst array with the pfn value of the destination
+ * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
+ * lock_page().
+ *
+ * Note that the caller does not have to migrate all the pages that are marked
+ * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
+ * device memory to system memory.  If the caller cannot migrate a device page
+ * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
+ * consequences for the userspace process, so it must be avoided if at all
+ * possible.
+ *
+ * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
+ * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
+ * allowing the caller to allocate device memory for those unbacked virtual
+ * addresses.  For this the caller simply has to allocate device memory and
+ * properly set the destination entry like for regular migration.  Note that
+ * this can still fail, and thus inside the device driver you must check if the
+ * migration was successful for those entries after calling migrate_vma_pages(),
+ * just like for regular migration.
+ *
+ * After that, the callers must call migrate_vma_pages() to go over each entry
+ * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
+ * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
+ * then migrate_vma_pages() to migrate struct page information from the source
+ * struct page to the destination struct page.  If it fails to migrate the
+ * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
+ * src array.
+ *
+ * At this point all successfully migrated pages have an entry in the src
+ * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
+ * array entry with MIGRATE_PFN_VALID flag set.
+ *
+ * Once migrate_vma_pages() returns the caller may inspect which pages were
+ * successfully migrated, and which were not.  Successfully migrated pages will
+ * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
+ *
+ * It is safe to update device page table after migrate_vma_pages() because
+ * both destination and source page are still locked, and the mmap_lock is held
+ * in read mode (hence no one can unmap the range being migrated).
+ *
+ * Once the caller is done cleaning up things and updating its page table (if it
+ * chose to do so, this is not an obligation) it finally calls
+ * migrate_vma_finalize() to update the CPU page table to point to new pages
+ * for successfully migrated pages or otherwise restore the CPU page table to
+ * point to the original source pages.
+ */
+int migrate_vma_setup(struct migrate_vma *args)
+{
+	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
+
+	args->start &= PAGE_MASK;
+	args->end &= PAGE_MASK;
+	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
+	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
+		return -EINVAL;
+	if (nr_pages <= 0)
+		return -EINVAL;
+	if (args->start < args->vma->vm_start ||
+	    args->start >= args->vma->vm_end)
+		return -EINVAL;
+	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
+		return -EINVAL;
+	if (!args->src || !args->dst)
+		return -EINVAL;
+
+	memset(args->src, 0, sizeof(*args->src) * nr_pages);
+	args->cpages = 0;
+	args->npages = 0;
+
+	migrate_vma_collect(args);
+
+	if (args->cpages)
+		migrate_vma_unmap(args);
+
+	/*
+	 * At this point pages are locked and unmapped, and thus they have
+	 * stable content and can safely be copied to destination memory that
+	 * is allocated by the drivers.
+	 */
+	return 0;
+
+}
+EXPORT_SYMBOL(migrate_vma_setup);
+
+/*
+ * This code closely matches the code in:
+ *   __handle_mm_fault()
+ *     handle_pte_fault()
+ *       do_anonymous_page()
+ * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
+ * private page.
+ */
+static void migrate_vma_insert_page(struct migrate_vma *migrate,
+				    unsigned long addr,
+				    struct page *page,
+				    unsigned long *src)
+{
+	struct vm_area_struct *vma = migrate->vma;
+	struct mm_struct *mm = vma->vm_mm;
+	bool flush = false;
+	spinlock_t *ptl;
+	pte_t entry;
+	pgd_t *pgdp;
+	p4d_t *p4dp;
+	pud_t *pudp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	/* Only allow populating anonymous memory */
+	if (!vma_is_anonymous(vma))
+		goto abort;
+
+	pgdp = pgd_offset(mm, addr);
+	p4dp = p4d_alloc(mm, pgdp, addr);
+	if (!p4dp)
+		goto abort;
+	pudp = pud_alloc(mm, p4dp, addr);
+	if (!pudp)
+		goto abort;
+	pmdp = pmd_alloc(mm, pudp, addr);
+	if (!pmdp)
+		goto abort;
+
+	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
+		goto abort;
+
+	/*
+	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
+	 * pte_offset_map() on pmds where a huge pmd might be created
+	 * from a different thread.
+	 *
+	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
+	 * parallel threads are excluded by other means.
+	 *
+	 * Here we only have mmap_read_lock(mm).
+	 */
+	if (pte_alloc(mm, pmdp))
+		goto abort;
+
+	/* See the comment in pte_alloc_one_map() */
+	if (unlikely(pmd_trans_unstable(pmdp)))
+		goto abort;
+
+	if (unlikely(anon_vma_prepare(vma)))
+		goto abort;
+	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
+		goto abort;
+
+	/*
+	 * The memory barrier inside __SetPageUptodate makes sure that
+	 * preceding stores to the page contents become visible before
+	 * the set_pte_at() write.
+	 */
+	__SetPageUptodate(page);
+
+	if (is_device_private_page(page)) {
+		swp_entry_t swp_entry;
+
+		if (vma->vm_flags & VM_WRITE)
+			swp_entry = make_writable_device_private_entry(
+						page_to_pfn(page));
+		else
+			swp_entry = make_readable_device_private_entry(
+						page_to_pfn(page));
+		entry = swp_entry_to_pte(swp_entry);
+	} else {
+		/*
+		 * For now we only support migrating to un-addressable device
+		 * memory.
+		 */
+		if (is_zone_device_page(page)) {
+			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
+			goto abort;
+		}
+		entry = mk_pte(page, vma->vm_page_prot);
+		if (vma->vm_flags & VM_WRITE)
+			entry = pte_mkwrite(pte_mkdirty(entry));
+	}
+
+	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
+
+	if (check_stable_address_space(mm))
+		goto unlock_abort;
+
+	if (pte_present(*ptep)) {
+		unsigned long pfn = pte_pfn(*ptep);
+
+		if (!is_zero_pfn(pfn))
+			goto unlock_abort;
+		flush = true;
+	} else if (!pte_none(*ptep))
+		goto unlock_abort;
+
+	/*
+	 * Check for userfaultfd but do not deliver the fault. Instead,
+	 * just back off.
+	 */
+	if (userfaultfd_missing(vma))
+		goto unlock_abort;
+
+	inc_mm_counter(mm, MM_ANONPAGES);
+	page_add_new_anon_rmap(page, vma, addr, false);
+	if (!is_zone_device_page(page))
+		lru_cache_add_inactive_or_unevictable(page, vma);
+	get_page(page);
+
+	if (flush) {
+		flush_cache_page(vma, addr, pte_pfn(*ptep));
+		ptep_clear_flush_notify(vma, addr, ptep);
+		set_pte_at_notify(mm, addr, ptep, entry);
+		update_mmu_cache(vma, addr, ptep);
+	} else {
+		/* No need to invalidate - it was non-present before */
+		set_pte_at(mm, addr, ptep, entry);
+		update_mmu_cache(vma, addr, ptep);
+	}
+
+	pte_unmap_unlock(ptep, ptl);
+	*src = MIGRATE_PFN_MIGRATE;
+	return;
+
+unlock_abort:
+	pte_unmap_unlock(ptep, ptl);
+abort:
+	*src &= ~MIGRATE_PFN_MIGRATE;
+}
+
+/**
+ * migrate_vma_pages() - migrate meta-data from src page to dst page
+ * @migrate: migrate struct containing all migration information
+ *
+ * This migrates struct page meta-data from source struct page to destination
+ * struct page. This effectively finishes the migration from source page to the
+ * destination page.
+ */
+void migrate_vma_pages(struct migrate_vma *migrate)
+{
+	const unsigned long npages = migrate->npages;
+	const unsigned long start = migrate->start;
+	struct mmu_notifier_range range;
+	unsigned long addr, i;
+	bool notified = false;
+
+	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
+		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
+		struct page *page = migrate_pfn_to_page(migrate->src[i]);
+		struct address_space *mapping;
+		int r;
+
+		if (!newpage) {
+			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+			continue;
+		}
+
+		if (!page) {
+			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
+				continue;
+			if (!notified) {
+				notified = true;
+
+				mmu_notifier_range_init_owner(&range,
+					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
+					migrate->vma->vm_mm, addr, migrate->end,
+					migrate->pgmap_owner);
+				mmu_notifier_invalidate_range_start(&range);
+			}
+			migrate_vma_insert_page(migrate, addr, newpage,
+						&migrate->src[i]);
+			continue;
+		}
+
+		mapping = page_mapping(page);
+
+		if (is_device_private_page(newpage)) {
+			/*
+			 * For now only support private anonymous when migrating
+			 * to un-addressable device memory.
+			 */
+			if (mapping) {
+				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+				continue;
+			}
+		} else if (is_zone_device_page(newpage)) {
+			/*
+			 * Other types of ZONE_DEVICE page are not supported.
+			 */
+			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+			continue;
+		}
+
+		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
+		if (r != MIGRATEPAGE_SUCCESS)
+			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
+	}
+
+	/*
+	 * No need to double call mmu_notifier->invalidate_range() callback as
+	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
+	 * did already call it.
+	 */
+	if (notified)
+		mmu_notifier_invalidate_range_only_end(&range);
+}
+EXPORT_SYMBOL(migrate_vma_pages);
+
+/**
+ * migrate_vma_finalize() - restore CPU page table entry
+ * @migrate: migrate struct containing all migration information
+ *
+ * This replaces the special migration pte entry with either a mapping to the
+ * new page if migration was successful for that page, or to the original page
+ * otherwise.
+ *
+ * This also unlocks the pages and puts them back on the lru, or drops the extra
+ * refcount, for device pages.
+ */
+void migrate_vma_finalize(struct migrate_vma *migrate)
+{
+	const unsigned long npages = migrate->npages;
+	unsigned long i;
+
+	for (i = 0; i < npages; i++) {
+		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
+		struct page *page = migrate_pfn_to_page(migrate->src[i]);
+
+		if (!page) {
+			if (newpage) {
+				unlock_page(newpage);
+				put_page(newpage);
+			}
+			continue;
+		}
+
+		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
+			if (newpage) {
+				unlock_page(newpage);
+				put_page(newpage);
+			}
+			newpage = page;
+		}
+
+		remove_migration_ptes(page, newpage, false);
+		unlock_page(page);
+
+		if (is_zone_device_page(page))
+			put_page(page);
+		else
+			putback_lru_page(page);
+
+		if (newpage != page) {
+			unlock_page(newpage);
+			if (is_zone_device_page(newpage))
+				put_page(newpage);
+			else
+				putback_lru_page(newpage);
+		}
+	}
+}
+EXPORT_SYMBOL(migrate_vma_finalize);