@@ -286,9 +286,6 @@ config DECOMPRESS_GZIP
select ZLIB_INFLATE
tristate
-config DECOMPRESS_BZIP2
- tristate
-
config DECOMPRESS_LZMA
tristate
@@ -134,7 +134,6 @@ obj-$(CONFIG_XZ_DEC) += xz/
obj-$(CONFIG_RAID6_PQ) += raid6/
lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
-lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
lib-$(CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o
lib-$(CONFIG_DECOMPRESS_XZ) += decompress_unxz.o
lib-$(CONFIG_DECOMPRESS_LZO) += decompress_unlzo.o
@@ -23,9 +23,6 @@
#ifndef CONFIG_DECOMPRESS_GZIP
# define gunzip NULL
#endif
-#ifndef CONFIG_DECOMPRESS_BZIP2
-# define bunzip2 NULL
-#endif
#ifndef CONFIG_DECOMPRESS_LZMA
# define unlzma NULL
#endif
@@ -51,7 +48,6 @@ struct compress_format {
static const struct compress_format compressed_formats[] __initconst = {
{ {0x1f, 0x8b}, "gzip", gunzip },
{ {0x1f, 0x9e}, "gzip", gunzip },
- { {0x42, 0x5a}, "bzip2", bunzip2 },
{ {0x5d, 0x00}, "lzma", unlzma },
{ {0xfd, 0x37}, "xz", unxz },
{ {0x89, 0x4c}, "lzo", unlzo },
deleted file mode 100644
@@ -1,756 +0,0 @@
-/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
-
- Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
- which also acknowledges contributions by Mike Burrows, David Wheeler,
- Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
- Robert Sedgewick, and Jon L. Bentley.
-
- This code is licensed under the LGPLv2:
- LGPL (http://www.gnu.org/copyleft/lgpl.html
-*/
-
-/*
- Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
-
- More efficient reading of Huffman codes, a streamlined read_bunzip()
- function, and various other tweaks. In (limited) tests, approximately
- 20% faster than bzcat on x86 and about 10% faster on arm.
-
- Note that about 2/3 of the time is spent in read_unzip() reversing
- the Burrows-Wheeler transformation. Much of that time is delay
- resulting from cache misses.
-
- I would ask that anyone benefiting from this work, especially those
- using it in commercial products, consider making a donation to my local
- non-profit hospice organization in the name of the woman I loved, who
- passed away Feb. 12, 2003.
-
- In memory of Toni W. Hagan
-
- Hospice of Acadiana, Inc.
- 2600 Johnston St., Suite 200
- Lafayette, LA 70503-3240
-
- Phone (337) 232-1234 or 1-800-738-2226
- Fax (337) 232-1297
-
- http://www.hospiceacadiana.com/
-
- Manuel
- */
-
-/*
- Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
-*/
-
-
-#ifdef STATIC
-#define PREBOOT
-#else
-#include <linux/decompress/bunzip2.h>
-#endif /* STATIC */
-
-#include <linux/decompress/mm.h>
-#include <linux/crc32poly.h>
-
-#ifndef INT_MAX
-#define INT_MAX 0x7fffffff
-#endif
-
-/* Constants for Huffman coding */
-#define MAX_GROUPS 6
-#define GROUP_SIZE 50 /* 64 would have been more efficient */
-#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
-#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
-#define SYMBOL_RUNA 0
-#define SYMBOL_RUNB 1
-
-/* Status return values */
-#define RETVAL_OK 0
-#define RETVAL_LAST_BLOCK (-1)
-#define RETVAL_NOT_BZIP_DATA (-2)
-#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
-#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
-#define RETVAL_DATA_ERROR (-5)
-#define RETVAL_OUT_OF_MEMORY (-6)
-#define RETVAL_OBSOLETE_INPUT (-7)
-
-/* Other housekeeping constants */
-#define BZIP2_IOBUF_SIZE 4096
-
-/* This is what we know about each Huffman coding group */
-struct group_data {
- /* We have an extra slot at the end of limit[] for a sentinal value. */
- int limit[MAX_HUFCODE_BITS+1];
- int base[MAX_HUFCODE_BITS];
- int permute[MAX_SYMBOLS];
- int minLen, maxLen;
-};
-
-/* Structure holding all the housekeeping data, including IO buffers and
- memory that persists between calls to bunzip */
-struct bunzip_data {
- /* State for interrupting output loop */
- int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
- /* I/O tracking data (file handles, buffers, positions, etc.) */
- long (*fill)(void*, unsigned long);
- long inbufCount, inbufPos /*, outbufPos*/;
- unsigned char *inbuf /*,*outbuf*/;
- unsigned int inbufBitCount, inbufBits;
- /* The CRC values stored in the block header and calculated from the
- data */
- unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
- /* Intermediate buffer and its size (in bytes) */
- unsigned int *dbuf, dbufSize;
- /* These things are a bit too big to go on the stack */
- unsigned char selectors[32768]; /* nSelectors = 15 bits */
- struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
- int io_error; /* non-zero if we have IO error */
- int byteCount[256];
- unsigned char symToByte[256], mtfSymbol[256];
-};
-
-
-/* Return the next nnn bits of input. All reads from the compressed input
- are done through this function. All reads are big endian */
-static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
-{
- unsigned int bits = 0;
-
- /* If we need to get more data from the byte buffer, do so.
- (Loop getting one byte at a time to enforce endianness and avoid
- unaligned access.) */
- while (bd->inbufBitCount < bits_wanted) {
- /* If we need to read more data from file into byte buffer, do
- so */
- if (bd->inbufPos == bd->inbufCount) {
- if (bd->io_error)
- return 0;
- bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
- if (bd->inbufCount <= 0) {
- bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
- return 0;
- }
- bd->inbufPos = 0;
- }
- /* Avoid 32-bit overflow (dump bit buffer to top of output) */
- if (bd->inbufBitCount >= 24) {
- bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
- bits_wanted -= bd->inbufBitCount;
- bits <<= bits_wanted;
- bd->inbufBitCount = 0;
- }
- /* Grab next 8 bits of input from buffer. */
- bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
- bd->inbufBitCount += 8;
- }
- /* Calculate result */
- bd->inbufBitCount -= bits_wanted;
- bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
-
- return bits;
-}
-
-/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
-
-static int INIT get_next_block(struct bunzip_data *bd)
-{
- struct group_data *hufGroup = NULL;
- int *base = NULL;
- int *limit = NULL;
- int dbufCount, nextSym, dbufSize, groupCount, selector,
- i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
- unsigned char uc, *symToByte, *mtfSymbol, *selectors;
- unsigned int *dbuf, origPtr;
-
- dbuf = bd->dbuf;
- dbufSize = bd->dbufSize;
- selectors = bd->selectors;
- byteCount = bd->byteCount;
- symToByte = bd->symToByte;
- mtfSymbol = bd->mtfSymbol;
-
- /* Read in header signature and CRC, then validate signature.
- (last block signature means CRC is for whole file, return now) */
- i = get_bits(bd, 24);
- j = get_bits(bd, 24);
- bd->headerCRC = get_bits(bd, 32);
- if ((i == 0x177245) && (j == 0x385090))
- return RETVAL_LAST_BLOCK;
- if ((i != 0x314159) || (j != 0x265359))
- return RETVAL_NOT_BZIP_DATA;
- /* We can add support for blockRandomised if anybody complains.
- There was some code for this in busybox 1.0.0-pre3, but nobody ever
- noticed that it didn't actually work. */
- if (get_bits(bd, 1))
- return RETVAL_OBSOLETE_INPUT;
- origPtr = get_bits(bd, 24);
- if (origPtr >= dbufSize)
- return RETVAL_DATA_ERROR;
- /* mapping table: if some byte values are never used (encoding things
- like ascii text), the compression code removes the gaps to have fewer
- symbols to deal with, and writes a sparse bitfield indicating which
- values were present. We make a translation table to convert the
- symbols back to the corresponding bytes. */
- t = get_bits(bd, 16);
- symTotal = 0;
- for (i = 0; i < 16; i++) {
- if (t&(1 << (15-i))) {
- k = get_bits(bd, 16);
- for (j = 0; j < 16; j++)
- if (k&(1 << (15-j)))
- symToByte[symTotal++] = (16*i)+j;
- }
- }
- /* How many different Huffman coding groups does this block use? */
- groupCount = get_bits(bd, 3);
- if (groupCount < 2 || groupCount > MAX_GROUPS)
- return RETVAL_DATA_ERROR;
- /* nSelectors: Every GROUP_SIZE many symbols we select a new
- Huffman coding group. Read in the group selector list,
- which is stored as MTF encoded bit runs. (MTF = Move To
- Front, as each value is used it's moved to the start of the
- list.) */
- nSelectors = get_bits(bd, 15);
- if (!nSelectors)
- return RETVAL_DATA_ERROR;
- for (i = 0; i < groupCount; i++)
- mtfSymbol[i] = i;
- for (i = 0; i < nSelectors; i++) {
- /* Get next value */
- for (j = 0; get_bits(bd, 1); j++)
- if (j >= groupCount)
- return RETVAL_DATA_ERROR;
- /* Decode MTF to get the next selector */
- uc = mtfSymbol[j];
- for (; j; j--)
- mtfSymbol[j] = mtfSymbol[j-1];
- mtfSymbol[0] = selectors[i] = uc;
- }
- /* Read the Huffman coding tables for each group, which code
- for symTotal literal symbols, plus two run symbols (RUNA,
- RUNB) */
- symCount = symTotal+2;
- for (j = 0; j < groupCount; j++) {
- unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
- int minLen, maxLen, pp;
- /* Read Huffman code lengths for each symbol. They're
- stored in a way similar to mtf; record a starting
- value for the first symbol, and an offset from the
- previous value for everys symbol after that.
- (Subtracting 1 before the loop and then adding it
- back at the end is an optimization that makes the
- test inside the loop simpler: symbol length 0
- becomes negative, so an unsigned inequality catches
- it.) */
- t = get_bits(bd, 5)-1;
- for (i = 0; i < symCount; i++) {
- for (;;) {
- if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
- return RETVAL_DATA_ERROR;
-
- /* If first bit is 0, stop. Else
- second bit indicates whether to
- increment or decrement the value.
- Optimization: grab 2 bits and unget
- the second if the first was 0. */
-
- k = get_bits(bd, 2);
- if (k < 2) {
- bd->inbufBitCount++;
- break;
- }
- /* Add one if second bit 1, else
- * subtract 1. Avoids if/else */
- t += (((k+1)&2)-1);
- }
- /* Correct for the initial -1, to get the
- * final symbol length */
- length[i] = t+1;
- }
- /* Find largest and smallest lengths in this group */
- minLen = maxLen = length[0];
-
- for (i = 1; i < symCount; i++) {
- if (length[i] > maxLen)
- maxLen = length[i];
- else if (length[i] < minLen)
- minLen = length[i];
- }
-
- /* Calculate permute[], base[], and limit[] tables from
- * length[].
- *
- * permute[] is the lookup table for converting
- * Huffman coded symbols into decoded symbols. base[]
- * is the amount to subtract from the value of a
- * Huffman symbol of a given length when using
- * permute[].
- *
- * limit[] indicates the largest numerical value a
- * symbol with a given number of bits can have. This
- * is how the Huffman codes can vary in length: each
- * code with a value > limit[length] needs another
- * bit.
- */
- hufGroup = bd->groups+j;
- hufGroup->minLen = minLen;
- hufGroup->maxLen = maxLen;
- /* Note that minLen can't be smaller than 1, so we
- adjust the base and limit array pointers so we're
- not always wasting the first entry. We do this
- again when using them (during symbol decoding).*/
- base = hufGroup->base-1;
- limit = hufGroup->limit-1;
- /* Calculate permute[]. Concurrently, initialize
- * temp[] and limit[]. */
- pp = 0;
- for (i = minLen; i <= maxLen; i++) {
- temp[i] = limit[i] = 0;
- for (t = 0; t < symCount; t++)
- if (length[t] == i)
- hufGroup->permute[pp++] = t;
- }
- /* Count symbols coded for at each bit length */
- for (i = 0; i < symCount; i++)
- temp[length[i]]++;
- /* Calculate limit[] (the largest symbol-coding value
- *at each bit length, which is (previous limit <<
- *1)+symbols at this level), and base[] (number of
- *symbols to ignore at each bit length, which is limit
- *minus the cumulative count of symbols coded for
- *already). */
- pp = t = 0;
- for (i = minLen; i < maxLen; i++) {
- pp += temp[i];
- /* We read the largest possible symbol size
- and then unget bits after determining how
- many we need, and those extra bits could be
- set to anything. (They're noise from
- future symbols.) At each level we're
- really only interested in the first few
- bits, so here we set all the trailing
- to-be-ignored bits to 1 so they don't
- affect the value > limit[length]
- comparison. */
- limit[i] = (pp << (maxLen - i)) - 1;
- pp <<= 1;
- base[i+1] = pp-(t += temp[i]);
- }
- limit[maxLen+1] = INT_MAX; /* Sentinal value for
- * reading next sym. */
- limit[maxLen] = pp+temp[maxLen]-1;
- base[minLen] = 0;
- }
- /* We've finished reading and digesting the block header. Now
- read this block's Huffman coded symbols from the file and
- undo the Huffman coding and run length encoding, saving the
- result into dbuf[dbufCount++] = uc */
-
- /* Initialize symbol occurrence counters and symbol Move To
- * Front table */
- for (i = 0; i < 256; i++) {
- byteCount[i] = 0;
- mtfSymbol[i] = (unsigned char)i;
- }
- /* Loop through compressed symbols. */
- runPos = dbufCount = symCount = selector = 0;
- for (;;) {
- /* Determine which Huffman coding group to use. */
- if (!(symCount--)) {
- symCount = GROUP_SIZE-1;
- if (selector >= nSelectors)
- return RETVAL_DATA_ERROR;
- hufGroup = bd->groups+selectors[selector++];
- base = hufGroup->base-1;
- limit = hufGroup->limit-1;
- }
- /* Read next Huffman-coded symbol. */
- /* Note: It is far cheaper to read maxLen bits and
- back up than it is to read minLen bits and then an
- additional bit at a time, testing as we go.
- Because there is a trailing last block (with file
- CRC), there is no danger of the overread causing an
- unexpected EOF for a valid compressed file. As a
- further optimization, we do the read inline
- (falling back to a call to get_bits if the buffer
- runs dry). The following (up to got_huff_bits:) is
- equivalent to j = get_bits(bd, hufGroup->maxLen);
- */
- while (bd->inbufBitCount < hufGroup->maxLen) {
- if (bd->inbufPos == bd->inbufCount) {
- j = get_bits(bd, hufGroup->maxLen);
- goto got_huff_bits;
- }
- bd->inbufBits =
- (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
- bd->inbufBitCount += 8;
- };
- bd->inbufBitCount -= hufGroup->maxLen;
- j = (bd->inbufBits >> bd->inbufBitCount)&
- ((1 << hufGroup->maxLen)-1);
-got_huff_bits:
- /* Figure how how many bits are in next symbol and
- * unget extras */
- i = hufGroup->minLen;
- while (j > limit[i])
- ++i;
- bd->inbufBitCount += (hufGroup->maxLen - i);
- /* Huffman decode value to get nextSym (with bounds checking) */
- if ((i > hufGroup->maxLen)
- || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
- >= MAX_SYMBOLS))
- return RETVAL_DATA_ERROR;
- nextSym = hufGroup->permute[j];
- /* We have now decoded the symbol, which indicates
- either a new literal byte, or a repeated run of the
- most recent literal byte. First, check if nextSym
- indicates a repeated run, and if so loop collecting
- how many times to repeat the last literal. */
- if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
- /* If this is the start of a new run, zero out
- * counter */
- if (!runPos) {
- runPos = 1;
- t = 0;
- }
- /* Neat trick that saves 1 symbol: instead of
- or-ing 0 or 1 at each bit position, add 1
- or 2 instead. For example, 1011 is 1 << 0
- + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1
- + 1 << 2. You can make any bit pattern
- that way using 1 less symbol than the basic
- or 0/1 method (except all bits 0, which
- would use no symbols, but a run of length 0
- doesn't mean anything in this context).
- Thus space is saved. */
- t += (runPos << nextSym);
- /* +runPos if RUNA; +2*runPos if RUNB */
-
- runPos <<= 1;
- continue;
- }
- /* When we hit the first non-run symbol after a run,
- we now know how many times to repeat the last
- literal, so append that many copies to our buffer
- of decoded symbols (dbuf) now. (The last literal
- used is the one at the head of the mtfSymbol
- array.) */
- if (runPos) {
- runPos = 0;
- if (dbufCount+t >= dbufSize)
- return RETVAL_DATA_ERROR;
-
- uc = symToByte[mtfSymbol[0]];
- byteCount[uc] += t;
- while (t--)
- dbuf[dbufCount++] = uc;
- }
- /* Is this the terminating symbol? */
- if (nextSym > symTotal)
- break;
- /* At this point, nextSym indicates a new literal
- character. Subtract one to get the position in the
- MTF array at which this literal is currently to be
- found. (Note that the result can't be -1 or 0,
- because 0 and 1 are RUNA and RUNB. But another
- instance of the first symbol in the mtf array,
- position 0, would have been handled as part of a
- run above. Therefore 1 unused mtf position minus 2
- non-literal nextSym values equals -1.) */
- if (dbufCount >= dbufSize)
- return RETVAL_DATA_ERROR;
- i = nextSym - 1;
- uc = mtfSymbol[i];
- /* Adjust the MTF array. Since we typically expect to
- *move only a small number of symbols, and are bound
- *by 256 in any case, using memmove here would
- *typically be bigger and slower due to function call
- *overhead and other assorted setup costs. */
- do {
- mtfSymbol[i] = mtfSymbol[i-1];
- } while (--i);
- mtfSymbol[0] = uc;
- uc = symToByte[uc];
- /* We have our literal byte. Save it into dbuf. */
- byteCount[uc]++;
- dbuf[dbufCount++] = (unsigned int)uc;
- }
- /* At this point, we've read all the Huffman-coded symbols
- (and repeated runs) for this block from the input stream,
- and decoded them into the intermediate buffer. There are
- dbufCount many decoded bytes in dbuf[]. Now undo the
- Burrows-Wheeler transform on dbuf. See
- http://dogma.net/markn/articles/bwt/bwt.htm
- */
- /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
- j = 0;
- for (i = 0; i < 256; i++) {
- k = j+byteCount[i];
- byteCount[i] = j;
- j = k;
- }
- /* Figure out what order dbuf would be in if we sorted it. */
- for (i = 0; i < dbufCount; i++) {
- uc = (unsigned char)(dbuf[i] & 0xff);
- dbuf[byteCount[uc]] |= (i << 8);
- byteCount[uc]++;
- }
- /* Decode first byte by hand to initialize "previous" byte.
- Note that it doesn't get output, and if the first three
- characters are identical it doesn't qualify as a run (hence
- writeRunCountdown = 5). */
- if (dbufCount) {
- if (origPtr >= dbufCount)
- return RETVAL_DATA_ERROR;
- bd->writePos = dbuf[origPtr];
- bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
- bd->writePos >>= 8;
- bd->writeRunCountdown = 5;
- }
- bd->writeCount = dbufCount;
-
- return RETVAL_OK;
-}
-
-/* Undo burrows-wheeler transform on intermediate buffer to produce output.
- If start_bunzip was initialized with out_fd =-1, then up to len bytes of
- data are written to outbuf. Return value is number of bytes written or
- error (all errors are negative numbers). If out_fd!=-1, outbuf and len
- are ignored, data is written to out_fd and return is RETVAL_OK or error.
-*/
-
-static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
-{
- const unsigned int *dbuf;
- int pos, xcurrent, previous, gotcount;
-
- /* If last read was short due to end of file, return last block now */
- if (bd->writeCount < 0)
- return bd->writeCount;
-
- gotcount = 0;
- dbuf = bd->dbuf;
- pos = bd->writePos;
- xcurrent = bd->writeCurrent;
-
- /* We will always have pending decoded data to write into the output
- buffer unless this is the very first call (in which case we haven't
- Huffman-decoded a block into the intermediate buffer yet). */
-
- if (bd->writeCopies) {
- /* Inside the loop, writeCopies means extra copies (beyond 1) */
- --bd->writeCopies;
- /* Loop outputting bytes */
- for (;;) {
- /* If the output buffer is full, snapshot
- * state and return */
- if (gotcount >= len) {
- bd->writePos = pos;
- bd->writeCurrent = xcurrent;
- bd->writeCopies++;
- return len;
- }
- /* Write next byte into output buffer, updating CRC */
- outbuf[gotcount++] = xcurrent;
- bd->writeCRC = (((bd->writeCRC) << 8)
- ^bd->crc32Table[((bd->writeCRC) >> 24)
- ^xcurrent]);
- /* Loop now if we're outputting multiple
- * copies of this byte */
- if (bd->writeCopies) {
- --bd->writeCopies;
- continue;
- }
-decode_next_byte:
- if (!bd->writeCount--)
- break;
- /* Follow sequence vector to undo
- * Burrows-Wheeler transform */
- previous = xcurrent;
- pos = dbuf[pos];
- xcurrent = pos&0xff;
- pos >>= 8;
- /* After 3 consecutive copies of the same
- byte, the 4th is a repeat count. We count
- down from 4 instead *of counting up because
- testing for non-zero is faster */
- if (--bd->writeRunCountdown) {
- if (xcurrent != previous)
- bd->writeRunCountdown = 4;
- } else {
- /* We have a repeated run, this byte
- * indicates the count */
- bd->writeCopies = xcurrent;
- xcurrent = previous;
- bd->writeRunCountdown = 5;
- /* Sometimes there are just 3 bytes
- * (run length 0) */
- if (!bd->writeCopies)
- goto decode_next_byte;
- /* Subtract the 1 copy we'd output
- * anyway to get extras */
- --bd->writeCopies;
- }
- }
- /* Decompression of this block completed successfully */
- bd->writeCRC = ~bd->writeCRC;
- bd->totalCRC = ((bd->totalCRC << 1) |
- (bd->totalCRC >> 31)) ^ bd->writeCRC;
- /* If this block had a CRC error, force file level CRC error. */
- if (bd->writeCRC != bd->headerCRC) {
- bd->totalCRC = bd->headerCRC+1;
- return RETVAL_LAST_BLOCK;
- }
- }
-
- /* Refill the intermediate buffer by Huffman-decoding next
- * block of input */
- /* (previous is just a convenient unused temp variable here) */
- previous = get_next_block(bd);
- if (previous) {
- bd->writeCount = previous;
- return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
- }
- bd->writeCRC = 0xffffffffUL;
- pos = bd->writePos;
- xcurrent = bd->writeCurrent;
- goto decode_next_byte;
-}
-
-static long INIT nofill(void *buf, unsigned long len)
-{
- return -1;
-}
-
-/* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain
- a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
- ignored, and data is read from file handle into temporary buffer. */
-static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
- long (*fill)(void*, unsigned long))
-{
- struct bunzip_data *bd;
- unsigned int i, j, c;
- const unsigned int BZh0 =
- (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
- +(((unsigned int)'h') << 8)+(unsigned int)'0';
-
- /* Figure out how much data to allocate */
- i = sizeof(struct bunzip_data);
-
- /* Allocate bunzip_data. Most fields initialize to zero. */
- bd = *bdp = malloc(i);
- if (!bd)
- return RETVAL_OUT_OF_MEMORY;
- memset(bd, 0, sizeof(struct bunzip_data));
- /* Setup input buffer */
- bd->inbuf = inbuf;
- bd->inbufCount = len;
- if (fill != NULL)
- bd->fill = fill;
- else
- bd->fill = nofill;
-
- /* Init the CRC32 table (big endian) */
- for (i = 0; i < 256; i++) {
- c = i << 24;
- for (j = 8; j; j--)
- c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1);
- bd->crc32Table[i] = c;
- }
-
- /* Ensure that file starts with "BZh['1'-'9']." */
- i = get_bits(bd, 32);
- if (((unsigned int)(i-BZh0-1)) >= 9)
- return RETVAL_NOT_BZIP_DATA;
-
- /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
- uncompressed data. Allocate intermediate buffer for block. */
- bd->dbufSize = 100000*(i-BZh0);
-
- bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
- if (!bd->dbuf)
- return RETVAL_OUT_OF_MEMORY;
- return RETVAL_OK;
-}
-
-/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data,
- not end of file.) */
-STATIC int INIT bunzip2(unsigned char *buf, long len,
- long (*fill)(void*, unsigned long),
- long (*flush)(void*, unsigned long),
- unsigned char *outbuf,
- long *pos,
- void(*error)(char *x))
-{
- struct bunzip_data *bd;
- int i = -1;
- unsigned char *inbuf;
-
- if (flush)
- outbuf = malloc(BZIP2_IOBUF_SIZE);
-
- if (!outbuf) {
- error("Could not allocate output buffer");
- return RETVAL_OUT_OF_MEMORY;
- }
- if (buf)
- inbuf = buf;
- else
- inbuf = malloc(BZIP2_IOBUF_SIZE);
- if (!inbuf) {
- error("Could not allocate input buffer");
- i = RETVAL_OUT_OF_MEMORY;
- goto exit_0;
- }
- i = start_bunzip(&bd, inbuf, len, fill);
- if (!i) {
- for (;;) {
- i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
- if (i <= 0)
- break;
- if (!flush)
- outbuf += i;
- else
- if (i != flush(outbuf, i)) {
- i = RETVAL_UNEXPECTED_OUTPUT_EOF;
- break;
- }
- }
- }
- /* Check CRC and release memory */
- if (i == RETVAL_LAST_BLOCK) {
- if (bd->headerCRC != bd->totalCRC)
- error("Data integrity error when decompressing.");
- else
- i = RETVAL_OK;
- } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
- error("Compressed file ends unexpectedly");
- }
- if (!bd)
- goto exit_1;
- if (bd->dbuf)
- large_free(bd->dbuf);
- if (pos)
- *pos = bd->inbufPos;
- free(bd);
-exit_1:
- if (!buf)
- free(inbuf);
-exit_0:
- if (flush)
- free(outbuf);
- return i;
-}
-
-#ifdef PREBOOT
-STATIC int INIT __decompress(unsigned char *buf, long len,
- long (*fill)(void*, unsigned long),
- long (*flush)(void*, unsigned long),
- unsigned char *outbuf, long olen,
- long *pos,
- void (*error)(char *x))
-{
- return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
-}
-#endif
@@ -294,10 +294,10 @@ $(obj)/%.dtb: $(src)/%.dts $(DTC) FORCE
dtc-tmp = $(subst $(comma),_,$(dot-target).dts.tmp)
-# Bzip2
+# Lzma
# ---------------------------------------------------------------------------
-# Bzip2 and LZMA do not include size in file... so we have to fake that;
+# LZMA does not include size in file... so we have to fake that;
# append the size as a 32-bit littleendian number as gzip does.
size_append = printf $(shell \
dec_size=0; \
@@ -314,14 +314,6 @@ printf "%08x\n" $$dec_size | \
} \
)
-quiet_cmd_bzip2 = BZIP2 $@
-cmd_bzip2 = (cat $(filter-out FORCE,$^) | \
- bzip2 -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
- (rm -f $@ ; false)
-
-# Lzma
-# ---------------------------------------------------------------------------
-
quiet_cmd_lzma = LZMA $@
cmd_lzma = (cat $(filter-out FORCE,$^) | \
lzma -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \
All remaining references are userspace code to build tarballs, packages or such. Signed-off-by: Adam Borowski <kilobyte@angband.pl> --- lib/Kconfig | 3 - lib/Makefile | 1 - lib/decompress.c | 4 - lib/decompress_bunzip2.c | 756 --------------------------------------- scripts/Makefile.lib | 12 +- 5 files changed, 2 insertions(+), 774 deletions(-) delete mode 100644 lib/decompress_bunzip2.c