Message ID | 1594819885-31016-4-git-send-email-sumitg@nvidia.com (mailing list archive) |
---|---|
State | New, archived |
Delegated to: | viresh kumar |
Headers | show |
Series | Add cpufreq driver for Tegra194 | expand |
On 15/07/2020 14:31, Sumit Gupta wrote: > Add support for CPU frequency scaling on Tegra194. The frequency > of each core can be adjusted by writing a clock divisor value to > a MSR on the core. The range of valid divisors is queried from > the BPMP. > > Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com> > Signed-off-by: Sumit Gupta <sumitg@nvidia.com> > --- > drivers/cpufreq/Kconfig.arm | 7 + > drivers/cpufreq/Makefile | 1 + > drivers/cpufreq/tegra194-cpufreq.c | 397 +++++++++++++++++++++++++++++++++++++ > 3 files changed, 405 insertions(+) > create mode 100644 drivers/cpufreq/tegra194-cpufreq.c > > diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm > index 15c1a12..7e99a46 100644 > --- a/drivers/cpufreq/Kconfig.arm > +++ b/drivers/cpufreq/Kconfig.arm > @@ -314,6 +314,13 @@ config ARM_TEGRA186_CPUFREQ > help > This adds the CPUFreq driver support for Tegra186 SOCs. > > +config ARM_TEGRA194_CPUFREQ > + tristate "Tegra194 CPUFreq support" > + depends on ARCH_TEGRA_194_SOC && TEGRA_BPMP > + default y > + help > + This adds CPU frequency driver support for Tegra194 SOCs. > + > config ARM_TI_CPUFREQ > bool "Texas Instruments CPUFreq support" > depends on ARCH_OMAP2PLUS > diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile > index f6670c4..66b5563 100644 > --- a/drivers/cpufreq/Makefile > +++ b/drivers/cpufreq/Makefile > @@ -83,6 +83,7 @@ obj-$(CONFIG_ARM_TANGO_CPUFREQ) += tango-cpufreq.o > obj-$(CONFIG_ARM_TEGRA20_CPUFREQ) += tegra20-cpufreq.o > obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o > obj-$(CONFIG_ARM_TEGRA186_CPUFREQ) += tegra186-cpufreq.o > +obj-$(CONFIG_ARM_TEGRA194_CPUFREQ) += tegra194-cpufreq.o > obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-cpufreq.o > obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o > > diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c > new file mode 100644 > index 0000000..b52a5e2 > --- /dev/null > +++ b/drivers/cpufreq/tegra194-cpufreq.c > @@ -0,0 +1,397 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved > + */ > + > +#include <linux/cpu.h> > +#include <linux/cpufreq.h> > +#include <linux/delay.h> > +#include <linux/dma-mapping.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/of_platform.h> > +#include <linux/platform_device.h> > +#include <linux/slab.h> > + > +#include <asm/smp_plat.h> > + > +#include <soc/tegra/bpmp.h> > +#include <soc/tegra/bpmp-abi.h> > + > +#define KHZ 1000 > +#define REF_CLK_MHZ 408 /* 408 MHz */ > +#define US_DELAY 500 > +#define US_DELAY_MIN 2 > +#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) > +#define MAX_CNT ~0U > + > +/* cpufreq transisition latency */ > +#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ > + > +enum cluster { > + CLUSTER0, > + CLUSTER1, > + CLUSTER2, > + CLUSTER3, > + MAX_CLUSTERS, > +}; > + > +struct tegra194_cpufreq_data { > + void __iomem *regs; > + size_t num_clusters; > + struct cpufreq_frequency_table **tables; > +}; > + > +struct tegra_cpu_ctr { > + u32 cpu; > + u32 delay; > + u32 coreclk_cnt, last_coreclk_cnt; > + u32 refclk_cnt, last_refclk_cnt; > +}; > + > +struct read_counters_work { > + struct work_struct work; > + struct tegra_cpu_ctr c; > +}; > + > +static struct workqueue_struct *read_counters_wq; > + > +static enum cluster get_cpu_cluster(u8 cpu) > +{ > + return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); > +} > + > +/* > + * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. > + * The register provides frequency feedback information to > + * determine the average actual frequency a core has run at over > + * a period of time. > + * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) > + * [63:32] Core clock counter: counts on every core clock cycle > + * where the core is architecturally clocking > + */ > +static u64 read_freq_feedback(void) > +{ > + u64 val = 0; > + > + asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); > + > + return val; > +} > + > +static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response > + *nltbl, u16 ndiv) > +{ > + return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); > +} > + > +static void tegra_read_counters(struct work_struct *work) > +{ > + struct read_counters_work *read_counters_work; > + struct tegra_cpu_ctr *c; > + u64 val; > + > + /* > + * ref_clk_counter(32 bit counter) runs on constant clk, > + * pll_p(408MHz). > + * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter > + * = 10526880 usec = 10.527 sec to overflow > + * > + * Like wise core_clk_counter(32 bit counter) runs on core clock. > + * It's synchronized to crab_clk (cpu_crab_clk) which runs at > + * freq of cluster. Assuming max cluster clock ~2000MHz, > + * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter > + * = ~2.147 sec to overflow > + */ > + read_counters_work = container_of(work, struct read_counters_work, > + work); > + c = &read_counters_work->c; > + > + val = read_freq_feedback(); > + c->last_refclk_cnt = lower_32_bits(val); > + c->last_coreclk_cnt = upper_32_bits(val); > + udelay(c->delay); > + val = read_freq_feedback(); > + c->refclk_cnt = lower_32_bits(val); > + c->coreclk_cnt = upper_32_bits(val); > +} > + > +/* > + * Return instantaneous cpu speed > + * Instantaneous freq is calculated as - > + * -Takes sample on every query of getting the freq. > + * - Read core and ref clock counters; > + * - Delay for X us > + * - Read above cycle counters again > + * - Calculates freq by subtracting current and previous counters > + * divided by the delay time or eqv. of ref_clk_counter in delta time > + * - Return Kcycles/second, freq in KHz > + * > + * delta time period = x sec > + * = delta ref_clk_counter / (408 * 10^6) sec > + * freq in Hz = cycles/sec > + * = (delta cycles / x sec > + * = (delta cycles * 408 * 10^6) / delta ref_clk_counter > + * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter > + * > + * @cpu - logical cpu whose freq to be updated > + * Returns freq in KHz on success, 0 if cpu is offline > + */ > +static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay) > +{ > + struct read_counters_work read_counters_work; > + struct tegra_cpu_ctr c; > + u32 delta_refcnt; > + u32 delta_ccnt; > + u32 rate_mhz; > + > + /* > + * udelay() is required to reconstruct cpu frequency over an > + * observation window. Using workqueue to call udelay() with > + * interrupts enabled. > + */ > + read_counters_work.c.cpu = cpu; > + read_counters_work.c.delay = delay; > + INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); > + queue_work_on(cpu, read_counters_wq, &read_counters_work.work); > + flush_work(&read_counters_work.work); > + c = read_counters_work.c; > + > + if (c.coreclk_cnt < c.last_coreclk_cnt) > + delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); > + else > + delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; > + if (!delta_ccnt) > + return 0; > + > + /* ref clock is 32 bits */ > + if (c.refclk_cnt < c.last_refclk_cnt) > + delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); > + else > + delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; > + if (!delta_refcnt) { > + pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); > + return 0; > + } > + rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; > + > + return (rate_mhz * KHZ); /* in KHz */ > +} > + > +static unsigned int tegra194_get_speed(u32 cpu) > +{ > + return tegra194_get_speed_common(cpu, US_DELAY); > +} > + > +static unsigned int tegra194_fast_get_speed(u32 cpu) > +{ > + return tegra194_get_speed_common(cpu, US_DELAY_MIN); > +} Personally, I would not bother with the above function as it is only used in one place. > + > +static int tegra194_cpufreq_init(struct cpufreq_policy *policy) > +{ > + struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); > + int cl = get_cpu_cluster(policy->cpu); > + u32 cpu; > + > + if (cl >= data->num_clusters) > + return -EINVAL; > + > + policy->cur = tegra194_fast_get_speed(policy->cpu); /* boot freq */ > + > + /* set same policy for all cpus in a cluster */ > + for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) > + cpumask_set_cpu(cpu, policy->cpus); > + > + policy->freq_table = data->tables[cl]; > + policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; > + > + return 0; > +} > + > +static void set_cpu_ndiv(void *data) > +{ > + struct cpufreq_frequency_table *tbl = data; > + u64 ndiv_val = (u64)tbl->driver_data; > + > + asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); > +} > + > +static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, > + unsigned int index) > +{ > + struct cpufreq_frequency_table *tbl = policy->freq_table + index; > + > + /* > + * Each core writes frequency in per core register. Then both cores > + * in a cluster run at same frequency which is the maximum frequency > + * request out of the values requested by both cores in that cluster. > + */ > + on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); > + > + return 0; > +} > + > +static struct cpufreq_driver tegra194_cpufreq_driver = { > + .name = "tegra194", > + .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | > + CPUFREQ_NEED_INITIAL_FREQ_CHECK, > + .verify = cpufreq_generic_frequency_table_verify, > + .target_index = tegra194_cpufreq_set_target, > + .get = tegra194_get_speed, > + .init = tegra194_cpufreq_init, > + .attr = cpufreq_generic_attr, > +}; > + > +static void tegra194_cpufreq_free_resources(void) > +{ > + destroy_workqueue(read_counters_wq); > +} I would not bother with adding this function either. > + > +static struct cpufreq_frequency_table * > +init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, > + unsigned int cluster_id) > +{ > + struct cpufreq_frequency_table *freq_table; > + struct mrq_cpu_ndiv_limits_response resp; > + unsigned int num_freqs, ndiv, delta_ndiv; > + struct mrq_cpu_ndiv_limits_request req; > + struct tegra_bpmp_message msg; > + u16 freq_table_step_size; > + int err, index; > + > + memset(&req, 0, sizeof(req)); > + req.cluster_id = cluster_id; > + > + memset(&msg, 0, sizeof(msg)); > + msg.mrq = MRQ_CPU_NDIV_LIMITS; > + msg.tx.data = &req; > + msg.tx.size = sizeof(req); > + msg.rx.data = &resp; > + msg.rx.size = sizeof(resp); > + > + err = tegra_bpmp_transfer(bpmp, &msg); > + if (err) > + return ERR_PTR(err); > + > + /* > + * Make sure frequency table step is a multiple of mdiv to match > + * vhint table granularity. > + */ > + freq_table_step_size = resp.mdiv * > + DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); > + > + dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", > + cluster_id, freq_table_step_size); > + > + delta_ndiv = resp.ndiv_max - resp.ndiv_min; > + > + if (unlikely(delta_ndiv == 0)) { > + num_freqs = 1; > + } else { > + /* We store both ndiv_min and ndiv_max hence the +1 */ > + num_freqs = delta_ndiv / freq_table_step_size + 1; > + } > + > + num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; > + > + freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, > + sizeof(*freq_table), GFP_KERNEL); > + if (!freq_table) > + return ERR_PTR(-ENOMEM); > + > + for (index = 0, ndiv = resp.ndiv_min; > + ndiv < resp.ndiv_max; > + index++, ndiv += freq_table_step_size) { > + freq_table[index].driver_data = ndiv; > + freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); > + } > + > + freq_table[index].driver_data = resp.ndiv_max; > + freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); > + freq_table[index].frequency = CPUFREQ_TABLE_END; > + > + return freq_table; > +} > + > +static int tegra194_cpufreq_probe(struct platform_device *pdev) > +{ > + struct tegra194_cpufreq_data *data; > + struct tegra_bpmp *bpmp; > + int err, i; > + > + data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); > + if (!data) > + return -ENOMEM; > + > + data->num_clusters = MAX_CLUSTERS; > + data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, > + sizeof(*data->tables), GFP_KERNEL); > + if (!data->tables) > + return -ENOMEM; > + > + platform_set_drvdata(pdev, data); > + > + bpmp = tegra_bpmp_get(&pdev->dev); > + if (IS_ERR(bpmp)) > + return PTR_ERR(bpmp); > + > + read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); > + if (!read_counters_wq) { > + dev_err(&pdev->dev, "fail to create_workqueue\n"); > + err = -EINVAL; > + goto put_bpmp; > + } > + > + for (i = 0; i < data->num_clusters; i++) { > + data->tables[i] = init_freq_table(pdev, bpmp, i); > + if (IS_ERR(data->tables[i])) { > + err = PTR_ERR(data->tables[i]); > + goto err_free_res; > + } > + } > + > + tegra194_cpufreq_driver.driver_data = data; > + > + err = cpufreq_register_driver(&tegra194_cpufreq_driver); > + if (err) > + goto err_free_res; You don't need the above if statement now you added the below. > + > + if (!err) > + goto put_bpmp; > + > +err_free_res: > + tegra194_cpufreq_free_resources(); > +put_bpmp: > + tegra_bpmp_put(bpmp); > + return err; > +} > + > +static int tegra194_cpufreq_remove(struct platform_device *pdev) > +{ > + cpufreq_unregister_driver(&tegra194_cpufreq_driver); > + tegra194_cpufreq_free_resources(); > + > + return 0; > +} > + > +static const struct of_device_id tegra194_cpufreq_of_match[] = { > + { .compatible = "nvidia,tegra194-ccplex", }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); > + > +static struct platform_driver tegra194_ccplex_driver = { > + .driver = { > + .name = "tegra194-cpufreq", > + .of_match_table = tegra194_cpufreq_of_match, > + }, > + .probe = tegra194_cpufreq_probe, > + .remove = tegra194_cpufreq_remove, > +}; > +module_platform_driver(tegra194_ccplex_driver); > + > +MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); > +MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); > +MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); > +MODULE_LICENSE("GPL v2"); > Cheers Jon
>> Add support for CPU frequency scaling on Tegra194. The frequency >> of each core can be adjusted by writing a clock divisor value to >> a MSR on the core. The range of valid divisors is queried from >> the BPMP. >> >> Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com> >> Signed-off-by: Sumit Gupta <sumitg@nvidia.com> >> --- >> drivers/cpufreq/Kconfig.arm | 7 + >> drivers/cpufreq/Makefile | 1 + >> drivers/cpufreq/tegra194-cpufreq.c | 397 +++++++++++++++++++++++++++++++++++++ >> 3 files changed, 405 insertions(+) >> create mode 100644 drivers/cpufreq/tegra194-cpufreq.c >> >> diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm >> index 15c1a12..7e99a46 100644 >> --- a/drivers/cpufreq/Kconfig.arm >> +++ b/drivers/cpufreq/Kconfig.arm >> @@ -314,6 +314,13 @@ config ARM_TEGRA186_CPUFREQ >> help >> This adds the CPUFreq driver support for Tegra186 SOCs. >> >> +config ARM_TEGRA194_CPUFREQ >> + tristate "Tegra194 CPUFreq support" >> + depends on ARCH_TEGRA_194_SOC && TEGRA_BPMP >> + default y >> + help >> + This adds CPU frequency driver support for Tegra194 SOCs. >> + >> config ARM_TI_CPUFREQ >> bool "Texas Instruments CPUFreq support" >> depends on ARCH_OMAP2PLUS >> diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile >> index f6670c4..66b5563 100644 >> --- a/drivers/cpufreq/Makefile >> +++ b/drivers/cpufreq/Makefile >> @@ -83,6 +83,7 @@ obj-$(CONFIG_ARM_TANGO_CPUFREQ) += tango-cpufreq.o >> obj-$(CONFIG_ARM_TEGRA20_CPUFREQ) += tegra20-cpufreq.o >> obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o >> obj-$(CONFIG_ARM_TEGRA186_CPUFREQ) += tegra186-cpufreq.o >> +obj-$(CONFIG_ARM_TEGRA194_CPUFREQ) += tegra194-cpufreq.o >> obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-cpufreq.o >> obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o >> >> diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c >> new file mode 100644 >> index 0000000..b52a5e2 >> --- /dev/null >> +++ b/drivers/cpufreq/tegra194-cpufreq.c >> @@ -0,0 +1,397 @@ >> +// SPDX-License-Identifier: GPL-2.0 >> +/* >> + * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved >> + */ >> + >> +#include <linux/cpu.h> >> +#include <linux/cpufreq.h> >> +#include <linux/delay.h> >> +#include <linux/dma-mapping.h> >> +#include <linux/module.h> >> +#include <linux/of.h> >> +#include <linux/of_platform.h> >> +#include <linux/platform_device.h> >> +#include <linux/slab.h> >> + >> +#include <asm/smp_plat.h> >> + >> +#include <soc/tegra/bpmp.h> >> +#include <soc/tegra/bpmp-abi.h> >> + >> +#define KHZ 1000 >> +#define REF_CLK_MHZ 408 /* 408 MHz */ >> +#define US_DELAY 500 >> +#define US_DELAY_MIN 2 >> +#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) >> +#define MAX_CNT ~0U >> + >> +/* cpufreq transisition latency */ >> +#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ >> + >> +enum cluster { >> + CLUSTER0, >> + CLUSTER1, >> + CLUSTER2, >> + CLUSTER3, >> + MAX_CLUSTERS, >> +}; >> + >> +struct tegra194_cpufreq_data { >> + void __iomem *regs; >> + size_t num_clusters; >> + struct cpufreq_frequency_table **tables; >> +}; >> + >> +struct tegra_cpu_ctr { >> + u32 cpu; >> + u32 delay; >> + u32 coreclk_cnt, last_coreclk_cnt; >> + u32 refclk_cnt, last_refclk_cnt; >> +}; >> + >> +struct read_counters_work { >> + struct work_struct work; >> + struct tegra_cpu_ctr c; >> +}; >> + >> +static struct workqueue_struct *read_counters_wq; >> + >> +static enum cluster get_cpu_cluster(u8 cpu) >> +{ >> + return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); >> +} >> + >> +/* >> + * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. >> + * The register provides frequency feedback information to >> + * determine the average actual frequency a core has run at over >> + * a period of time. >> + * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) >> + * [63:32] Core clock counter: counts on every core clock cycle >> + * where the core is architecturally clocking >> + */ >> +static u64 read_freq_feedback(void) >> +{ >> + u64 val = 0; >> + >> + asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); >> + >> + return val; >> +} >> + >> +static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response >> + *nltbl, u16 ndiv) >> +{ >> + return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); >> +} >> + >> +static void tegra_read_counters(struct work_struct *work) >> +{ >> + struct read_counters_work *read_counters_work; >> + struct tegra_cpu_ctr *c; >> + u64 val; >> + >> + /* >> + * ref_clk_counter(32 bit counter) runs on constant clk, >> + * pll_p(408MHz). >> + * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter >> + * = 10526880 usec = 10.527 sec to overflow >> + * >> + * Like wise core_clk_counter(32 bit counter) runs on core clock. >> + * It's synchronized to crab_clk (cpu_crab_clk) which runs at >> + * freq of cluster. Assuming max cluster clock ~2000MHz, >> + * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter >> + * = ~2.147 sec to overflow >> + */ >> + read_counters_work = container_of(work, struct read_counters_work, >> + work); >> + c = &read_counters_work->c; >> + >> + val = read_freq_feedback(); >> + c->last_refclk_cnt = lower_32_bits(val); >> + c->last_coreclk_cnt = upper_32_bits(val); >> + udelay(c->delay); >> + val = read_freq_feedback(); >> + c->refclk_cnt = lower_32_bits(val); >> + c->coreclk_cnt = upper_32_bits(val); >> +} >> + >> +/* >> + * Return instantaneous cpu speed >> + * Instantaneous freq is calculated as - >> + * -Takes sample on every query of getting the freq. >> + * - Read core and ref clock counters; >> + * - Delay for X us >> + * - Read above cycle counters again >> + * - Calculates freq by subtracting current and previous counters >> + * divided by the delay time or eqv. of ref_clk_counter in delta time >> + * - Return Kcycles/second, freq in KHz >> + * >> + * delta time period = x sec >> + * = delta ref_clk_counter / (408 * 10^6) sec >> + * freq in Hz = cycles/sec >> + * = (delta cycles / x sec >> + * = (delta cycles * 408 * 10^6) / delta ref_clk_counter >> + * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter >> + * >> + * @cpu - logical cpu whose freq to be updated >> + * Returns freq in KHz on success, 0 if cpu is offline >> + */ >> +static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay) >> +{ >> + struct read_counters_work read_counters_work; >> + struct tegra_cpu_ctr c; >> + u32 delta_refcnt; >> + u32 delta_ccnt; >> + u32 rate_mhz; >> + >> + /* >> + * udelay() is required to reconstruct cpu frequency over an >> + * observation window. Using workqueue to call udelay() with >> + * interrupts enabled. >> + */ >> + read_counters_work.c.cpu = cpu; >> + read_counters_work.c.delay = delay; >> + INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); >> + queue_work_on(cpu, read_counters_wq, &read_counters_work.work); >> + flush_work(&read_counters_work.work); >> + c = read_counters_work.c; >> + >> + if (c.coreclk_cnt < c.last_coreclk_cnt) >> + delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); >> + else >> + delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; >> + if (!delta_ccnt) >> + return 0; >> + >> + /* ref clock is 32 bits */ >> + if (c.refclk_cnt < c.last_refclk_cnt) >> + delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); >> + else >> + delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; >> + if (!delta_refcnt) { >> + pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); >> + return 0; >> + } >> + rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; >> + >> + return (rate_mhz * KHZ); /* in KHz */ >> +} >> + >> +static unsigned int tegra194_get_speed(u32 cpu) >> +{ >> + return tegra194_get_speed_common(cpu, US_DELAY); >> +} >> + >> +static unsigned int tegra194_fast_get_speed(u32 cpu) >> +{ >> + return tegra194_get_speed_common(cpu, US_DELAY_MIN); >> +} > > Personally, I would not bother with the above function as it is only > used in one place. > Kept the function for better readability. Ok, will open code it. >> + >> +static int tegra194_cpufreq_init(struct cpufreq_policy *policy) >> +{ >> + struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); >> + int cl = get_cpu_cluster(policy->cpu); >> + u32 cpu; >> + >> + if (cl >= data->num_clusters) >> + return -EINVAL; >> + >> + policy->cur = tegra194_fast_get_speed(policy->cpu); /* boot freq */ >> + >> + /* set same policy for all cpus in a cluster */ >> + for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) >> + cpumask_set_cpu(cpu, policy->cpus); >> + >> + policy->freq_table = data->tables[cl]; >> + policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; >> + >> + return 0; >> +} >> + >> +static void set_cpu_ndiv(void *data) >> +{ >> + struct cpufreq_frequency_table *tbl = data; >> + u64 ndiv_val = (u64)tbl->driver_data; >> + >> + asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); >> +} >> + >> +static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, >> + unsigned int index) >> +{ >> + struct cpufreq_frequency_table *tbl = policy->freq_table + index; >> + >> + /* >> + * Each core writes frequency in per core register. Then both cores >> + * in a cluster run at same frequency which is the maximum frequency >> + * request out of the values requested by both cores in that cluster. >> + */ >> + on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); >> + >> + return 0; >> +} >> + >> +static struct cpufreq_driver tegra194_cpufreq_driver = { >> + .name = "tegra194", >> + .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | >> + CPUFREQ_NEED_INITIAL_FREQ_CHECK, >> + .verify = cpufreq_generic_frequency_table_verify, >> + .target_index = tegra194_cpufreq_set_target, >> + .get = tegra194_get_speed, >> + .init = tegra194_cpufreq_init, >> + .attr = cpufreq_generic_attr, >> +}; >> + >> +static void tegra194_cpufreq_free_resources(void) >> +{ >> + destroy_workqueue(read_counters_wq); >> +} > > I would not bother with adding this function either. > This function is used from remove call also. >> + >> +static struct cpufreq_frequency_table * >> +init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, >> + unsigned int cluster_id) >> +{ >> + struct cpufreq_frequency_table *freq_table; >> + struct mrq_cpu_ndiv_limits_response resp; >> + unsigned int num_freqs, ndiv, delta_ndiv; >> + struct mrq_cpu_ndiv_limits_request req; >> + struct tegra_bpmp_message msg; >> + u16 freq_table_step_size; >> + int err, index; >> + >> + memset(&req, 0, sizeof(req)); >> + req.cluster_id = cluster_id; >> + >> + memset(&msg, 0, sizeof(msg)); >> + msg.mrq = MRQ_CPU_NDIV_LIMITS; >> + msg.tx.data = &req; >> + msg.tx.size = sizeof(req); >> + msg.rx.data = &resp; >> + msg.rx.size = sizeof(resp); >> + >> + err = tegra_bpmp_transfer(bpmp, &msg); >> + if (err) >> + return ERR_PTR(err); >> + >> + /* >> + * Make sure frequency table step is a multiple of mdiv to match >> + * vhint table granularity. >> + */ >> + freq_table_step_size = resp.mdiv * >> + DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); >> + >> + dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", >> + cluster_id, freq_table_step_size); >> + >> + delta_ndiv = resp.ndiv_max - resp.ndiv_min; >> + >> + if (unlikely(delta_ndiv == 0)) { >> + num_freqs = 1; >> + } else { >> + /* We store both ndiv_min and ndiv_max hence the +1 */ >> + num_freqs = delta_ndiv / freq_table_step_size + 1; >> + } >> + >> + num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; >> + >> + freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, >> + sizeof(*freq_table), GFP_KERNEL); >> + if (!freq_table) >> + return ERR_PTR(-ENOMEM); >> + >> + for (index = 0, ndiv = resp.ndiv_min; >> + ndiv < resp.ndiv_max; >> + index++, ndiv += freq_table_step_size) { >> + freq_table[index].driver_data = ndiv; >> + freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); >> + } >> + >> + freq_table[index].driver_data = resp.ndiv_max; >> + freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); >> + freq_table[index].frequency = CPUFREQ_TABLE_END; >> + >> + return freq_table; >> +} >> + >> +static int tegra194_cpufreq_probe(struct platform_device *pdev) >> +{ >> + struct tegra194_cpufreq_data *data; >> + struct tegra_bpmp *bpmp; >> + int err, i; >> + >> + data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); >> + if (!data) >> + return -ENOMEM; >> + >> + data->num_clusters = MAX_CLUSTERS; >> + data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, >> + sizeof(*data->tables), GFP_KERNEL); >> + if (!data->tables) >> + return -ENOMEM; >> + >> + platform_set_drvdata(pdev, data); >> + >> + bpmp = tegra_bpmp_get(&pdev->dev); >> + if (IS_ERR(bpmp)) >> + return PTR_ERR(bpmp); >> + >> + read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); >> + if (!read_counters_wq) { >> + dev_err(&pdev->dev, "fail to create_workqueue\n"); >> + err = -EINVAL; >> + goto put_bpmp; >> + } >> + >> + for (i = 0; i < data->num_clusters; i++) { >> + data->tables[i] = init_freq_table(pdev, bpmp, i); >> + if (IS_ERR(data->tables[i])) { >> + err = PTR_ERR(data->tables[i]); >> + goto err_free_res; >> + } >> + } >> + >> + tegra194_cpufreq_driver.driver_data = data; >> + >> + err = cpufreq_register_driver(&tegra194_cpufreq_driver); >> + if (err) >> + goto err_free_res; > > You don't need the above if statement now you added the below. > Sorry, missed to remove this. Will wait if any other comments before re-spin. >> + >> + if (!err) >> + goto put_bpmp; >> + >> +err_free_res: >> + tegra194_cpufreq_free_resources(); >> +put_bpmp: >> + tegra_bpmp_put(bpmp); >> + return err; >> +} >> + >> +static int tegra194_cpufreq_remove(struct platform_device *pdev) >> +{ >> + cpufreq_unregister_driver(&tegra194_cpufreq_driver); >> + tegra194_cpufreq_free_resources(); >> + >> + return 0; >> +} >> + >> +static const struct of_device_id tegra194_cpufreq_of_match[] = { >> + { .compatible = "nvidia,tegra194-ccplex", }, >> + { /* sentinel */ } >> +}; >> +MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); >> + >> +static struct platform_driver tegra194_ccplex_driver = { >> + .driver = { >> + .name = "tegra194-cpufreq", >> + .of_match_table = tegra194_cpufreq_of_match, >> + }, >> + .probe = tegra194_cpufreq_probe, >> + .remove = tegra194_cpufreq_remove, >> +}; >> +module_platform_driver(tegra194_ccplex_driver); >> + >> +MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); >> +MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); >> +MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); >> +MODULE_LICENSE("GPL v2"); >> > > Cheers > Jon >
On 15-07-20, 20:57, Sumit Gupta wrote: > Sorry, missed to remove this. Will wait if any other comments before > re-spin. I don't have any further comments, maybe just send a new version of this patch alone and name it v6.1.
On Wed, Jul 15, 2020 at 07:01:25PM +0530, Sumit Gupta wrote: > Add support for CPU frequency scaling on Tegra194. The frequency > of each core can be adjusted by writing a clock divisor value to > a MSR on the core. The range of valid divisors is queried from > the BPMP. > > Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com> > Signed-off-by: Sumit Gupta <sumitg@nvidia.com> If built as module: ERROR: modpost: "__cpu_logical_map" [drivers/cpufreq/tegra194-cpufreq.ko] undefined! Guenter
On Sat, Aug 08, 2020 at 05:40:09PM -0700, Guenter Roeck wrote: > On Wed, Jul 15, 2020 at 07:01:25PM +0530, Sumit Gupta wrote: > > Add support for CPU frequency scaling on Tegra194. The frequency > > of each core can be adjusted by writing a clock divisor value to > > a MSR on the core. The range of valid divisors is queried from > > the BPMP. > > > > Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com> > > Signed-off-by: Sumit Gupta <sumitg@nvidia.com> > > If built as module: > > ERROR: modpost: "__cpu_logical_map" [drivers/cpufreq/tegra194-cpufreq.ko] undefined! The exporting of this arm64 symbol went in last night.
diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm index 15c1a12..7e99a46 100644 --- a/drivers/cpufreq/Kconfig.arm +++ b/drivers/cpufreq/Kconfig.arm @@ -314,6 +314,13 @@ config ARM_TEGRA186_CPUFREQ help This adds the CPUFreq driver support for Tegra186 SOCs. +config ARM_TEGRA194_CPUFREQ + tristate "Tegra194 CPUFreq support" + depends on ARCH_TEGRA_194_SOC && TEGRA_BPMP + default y + help + This adds CPU frequency driver support for Tegra194 SOCs. + config ARM_TI_CPUFREQ bool "Texas Instruments CPUFreq support" depends on ARCH_OMAP2PLUS diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile index f6670c4..66b5563 100644 --- a/drivers/cpufreq/Makefile +++ b/drivers/cpufreq/Makefile @@ -83,6 +83,7 @@ obj-$(CONFIG_ARM_TANGO_CPUFREQ) += tango-cpufreq.o obj-$(CONFIG_ARM_TEGRA20_CPUFREQ) += tegra20-cpufreq.o obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o obj-$(CONFIG_ARM_TEGRA186_CPUFREQ) += tegra186-cpufreq.o +obj-$(CONFIG_ARM_TEGRA194_CPUFREQ) += tegra194-cpufreq.o obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-cpufreq.o obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c new file mode 100644 index 0000000..b52a5e2 --- /dev/null +++ b/drivers/cpufreq/tegra194-cpufreq.c @@ -0,0 +1,397 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved + */ + +#include <linux/cpu.h> +#include <linux/cpufreq.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#include <asm/smp_plat.h> + +#include <soc/tegra/bpmp.h> +#include <soc/tegra/bpmp-abi.h> + +#define KHZ 1000 +#define REF_CLK_MHZ 408 /* 408 MHz */ +#define US_DELAY 500 +#define US_DELAY_MIN 2 +#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) +#define MAX_CNT ~0U + +/* cpufreq transisition latency */ +#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ + +enum cluster { + CLUSTER0, + CLUSTER1, + CLUSTER2, + CLUSTER3, + MAX_CLUSTERS, +}; + +struct tegra194_cpufreq_data { + void __iomem *regs; + size_t num_clusters; + struct cpufreq_frequency_table **tables; +}; + +struct tegra_cpu_ctr { + u32 cpu; + u32 delay; + u32 coreclk_cnt, last_coreclk_cnt; + u32 refclk_cnt, last_refclk_cnt; +}; + +struct read_counters_work { + struct work_struct work; + struct tegra_cpu_ctr c; +}; + +static struct workqueue_struct *read_counters_wq; + +static enum cluster get_cpu_cluster(u8 cpu) +{ + return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); +} + +/* + * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. + * The register provides frequency feedback information to + * determine the average actual frequency a core has run at over + * a period of time. + * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) + * [63:32] Core clock counter: counts on every core clock cycle + * where the core is architecturally clocking + */ +static u64 read_freq_feedback(void) +{ + u64 val = 0; + + asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); + + return val; +} + +static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response + *nltbl, u16 ndiv) +{ + return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); +} + +static void tegra_read_counters(struct work_struct *work) +{ + struct read_counters_work *read_counters_work; + struct tegra_cpu_ctr *c; + u64 val; + + /* + * ref_clk_counter(32 bit counter) runs on constant clk, + * pll_p(408MHz). + * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter + * = 10526880 usec = 10.527 sec to overflow + * + * Like wise core_clk_counter(32 bit counter) runs on core clock. + * It's synchronized to crab_clk (cpu_crab_clk) which runs at + * freq of cluster. Assuming max cluster clock ~2000MHz, + * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter + * = ~2.147 sec to overflow + */ + read_counters_work = container_of(work, struct read_counters_work, + work); + c = &read_counters_work->c; + + val = read_freq_feedback(); + c->last_refclk_cnt = lower_32_bits(val); + c->last_coreclk_cnt = upper_32_bits(val); + udelay(c->delay); + val = read_freq_feedback(); + c->refclk_cnt = lower_32_bits(val); + c->coreclk_cnt = upper_32_bits(val); +} + +/* + * Return instantaneous cpu speed + * Instantaneous freq is calculated as - + * -Takes sample on every query of getting the freq. + * - Read core and ref clock counters; + * - Delay for X us + * - Read above cycle counters again + * - Calculates freq by subtracting current and previous counters + * divided by the delay time or eqv. of ref_clk_counter in delta time + * - Return Kcycles/second, freq in KHz + * + * delta time period = x sec + * = delta ref_clk_counter / (408 * 10^6) sec + * freq in Hz = cycles/sec + * = (delta cycles / x sec + * = (delta cycles * 408 * 10^6) / delta ref_clk_counter + * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter + * + * @cpu - logical cpu whose freq to be updated + * Returns freq in KHz on success, 0 if cpu is offline + */ +static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay) +{ + struct read_counters_work read_counters_work; + struct tegra_cpu_ctr c; + u32 delta_refcnt; + u32 delta_ccnt; + u32 rate_mhz; + + /* + * udelay() is required to reconstruct cpu frequency over an + * observation window. Using workqueue to call udelay() with + * interrupts enabled. + */ + read_counters_work.c.cpu = cpu; + read_counters_work.c.delay = delay; + INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); + queue_work_on(cpu, read_counters_wq, &read_counters_work.work); + flush_work(&read_counters_work.work); + c = read_counters_work.c; + + if (c.coreclk_cnt < c.last_coreclk_cnt) + delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); + else + delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; + if (!delta_ccnt) + return 0; + + /* ref clock is 32 bits */ + if (c.refclk_cnt < c.last_refclk_cnt) + delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); + else + delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; + if (!delta_refcnt) { + pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); + return 0; + } + rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; + + return (rate_mhz * KHZ); /* in KHz */ +} + +static unsigned int tegra194_get_speed(u32 cpu) +{ + return tegra194_get_speed_common(cpu, US_DELAY); +} + +static unsigned int tegra194_fast_get_speed(u32 cpu) +{ + return tegra194_get_speed_common(cpu, US_DELAY_MIN); +} + +static int tegra194_cpufreq_init(struct cpufreq_policy *policy) +{ + struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); + int cl = get_cpu_cluster(policy->cpu); + u32 cpu; + + if (cl >= data->num_clusters) + return -EINVAL; + + policy->cur = tegra194_fast_get_speed(policy->cpu); /* boot freq */ + + /* set same policy for all cpus in a cluster */ + for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) + cpumask_set_cpu(cpu, policy->cpus); + + policy->freq_table = data->tables[cl]; + policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; + + return 0; +} + +static void set_cpu_ndiv(void *data) +{ + struct cpufreq_frequency_table *tbl = data; + u64 ndiv_val = (u64)tbl->driver_data; + + asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); +} + +static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, + unsigned int index) +{ + struct cpufreq_frequency_table *tbl = policy->freq_table + index; + + /* + * Each core writes frequency in per core register. Then both cores + * in a cluster run at same frequency which is the maximum frequency + * request out of the values requested by both cores in that cluster. + */ + on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); + + return 0; +} + +static struct cpufreq_driver tegra194_cpufreq_driver = { + .name = "tegra194", + .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | + CPUFREQ_NEED_INITIAL_FREQ_CHECK, + .verify = cpufreq_generic_frequency_table_verify, + .target_index = tegra194_cpufreq_set_target, + .get = tegra194_get_speed, + .init = tegra194_cpufreq_init, + .attr = cpufreq_generic_attr, +}; + +static void tegra194_cpufreq_free_resources(void) +{ + destroy_workqueue(read_counters_wq); +} + +static struct cpufreq_frequency_table * +init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, + unsigned int cluster_id) +{ + struct cpufreq_frequency_table *freq_table; + struct mrq_cpu_ndiv_limits_response resp; + unsigned int num_freqs, ndiv, delta_ndiv; + struct mrq_cpu_ndiv_limits_request req; + struct tegra_bpmp_message msg; + u16 freq_table_step_size; + int err, index; + + memset(&req, 0, sizeof(req)); + req.cluster_id = cluster_id; + + memset(&msg, 0, sizeof(msg)); + msg.mrq = MRQ_CPU_NDIV_LIMITS; + msg.tx.data = &req; + msg.tx.size = sizeof(req); + msg.rx.data = &resp; + msg.rx.size = sizeof(resp); + + err = tegra_bpmp_transfer(bpmp, &msg); + if (err) + return ERR_PTR(err); + + /* + * Make sure frequency table step is a multiple of mdiv to match + * vhint table granularity. + */ + freq_table_step_size = resp.mdiv * + DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); + + dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", + cluster_id, freq_table_step_size); + + delta_ndiv = resp.ndiv_max - resp.ndiv_min; + + if (unlikely(delta_ndiv == 0)) { + num_freqs = 1; + } else { + /* We store both ndiv_min and ndiv_max hence the +1 */ + num_freqs = delta_ndiv / freq_table_step_size + 1; + } + + num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; + + freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, + sizeof(*freq_table), GFP_KERNEL); + if (!freq_table) + return ERR_PTR(-ENOMEM); + + for (index = 0, ndiv = resp.ndiv_min; + ndiv < resp.ndiv_max; + index++, ndiv += freq_table_step_size) { + freq_table[index].driver_data = ndiv; + freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); + } + + freq_table[index].driver_data = resp.ndiv_max; + freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); + freq_table[index].frequency = CPUFREQ_TABLE_END; + + return freq_table; +} + +static int tegra194_cpufreq_probe(struct platform_device *pdev) +{ + struct tegra194_cpufreq_data *data; + struct tegra_bpmp *bpmp; + int err, i; + + data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); + if (!data) + return -ENOMEM; + + data->num_clusters = MAX_CLUSTERS; + data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, + sizeof(*data->tables), GFP_KERNEL); + if (!data->tables) + return -ENOMEM; + + platform_set_drvdata(pdev, data); + + bpmp = tegra_bpmp_get(&pdev->dev); + if (IS_ERR(bpmp)) + return PTR_ERR(bpmp); + + read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); + if (!read_counters_wq) { + dev_err(&pdev->dev, "fail to create_workqueue\n"); + err = -EINVAL; + goto put_bpmp; + } + + for (i = 0; i < data->num_clusters; i++) { + data->tables[i] = init_freq_table(pdev, bpmp, i); + if (IS_ERR(data->tables[i])) { + err = PTR_ERR(data->tables[i]); + goto err_free_res; + } + } + + tegra194_cpufreq_driver.driver_data = data; + + err = cpufreq_register_driver(&tegra194_cpufreq_driver); + if (err) + goto err_free_res; + + if (!err) + goto put_bpmp; + +err_free_res: + tegra194_cpufreq_free_resources(); +put_bpmp: + tegra_bpmp_put(bpmp); + return err; +} + +static int tegra194_cpufreq_remove(struct platform_device *pdev) +{ + cpufreq_unregister_driver(&tegra194_cpufreq_driver); + tegra194_cpufreq_free_resources(); + + return 0; +} + +static const struct of_device_id tegra194_cpufreq_of_match[] = { + { .compatible = "nvidia,tegra194-ccplex", }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); + +static struct platform_driver tegra194_ccplex_driver = { + .driver = { + .name = "tegra194-cpufreq", + .of_match_table = tegra194_cpufreq_of_match, + }, + .probe = tegra194_cpufreq_probe, + .remove = tegra194_cpufreq_remove, +}; +module_platform_driver(tegra194_ccplex_driver); + +MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); +MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); +MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); +MODULE_LICENSE("GPL v2");