Message ID | 20170919184751.25110-2-jeremy.linton@arm.com (mailing list archive) |
---|---|
State | Deferred |
Headers | show |
Hi Jeremy, On 2017/9/20 2:47, Jeremy Linton wrote: > ACPI 6.2 adds a new table, which describes how processing units > are related to each other in tree like fashion. Caches are > also sprinkled throughout the tree and describe the properties > of the caches in relation to other caches and processing units. > > Add the code to parse the cache hierarchy and report the total > number of levels of cache for a given core using > acpi_find_last_cache_level() as well as fill out the individual > cores cache information with cache_setup_acpi() once the > cpu_cacheinfo structure has been populated by the arch specific > code. > > Further, report peers in the topology using setup_acpi_cpu_topology() > to report a unique ID for each processing unit at a given level > in the tree. These unique id's can then be used to match related > processing units which exist as threads, COD (clusters > on die), within a given package, etc. > > Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> > --- > drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++ > 1 file changed, 458 insertions(+) > create mode 100644 drivers/acpi/pptt.c > > diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c > new file mode 100644 > index 000000000000..f7694fa1e0bd > --- /dev/null > +++ b/drivers/acpi/pptt.c > @@ -0,0 +1,458 @@ > +/* > + * Copyright (C) 2017, ARM > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms and conditions of the GNU General Public License, > + * version 2, as published by the Free Software Foundation. > + * > + * This program is distributed in the hope it will be useful, but WITHOUT > + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or > + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for > + * more details. > + * > + * This file implements parsing of Processor Properties Topology Table (PPTT) > + * which is optionally used to describe the processor and cache topology. > + * Due to the relative pointers used throughout the table, this doesn't > + * leverage the existing subtable parsing in the kernel. > + */ > +#define pr_fmt(fmt) "ACPI PPTT: " fmt > + > +#include <linux/acpi.h> > +#include <linux/cacheinfo.h> > +#include <acpi/processor.h> > + > +/* > + * Given the PPTT table, find and verify that the subtable entry > + * is located within the table > + */ > +static struct acpi_subtable_header *fetch_pptt_subtable( > + struct acpi_table_header *table_hdr, u32 pptt_ref) > +{ > + struct acpi_subtable_header *entry; > + > + /* there isn't a subtable at reference 0 */ > + if (!pptt_ref) > + return NULL; > + > + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) > + return NULL; > + > + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref); > + > + if (pptt_ref + entry->length > table_hdr->length) > + return NULL; > + > + return entry; > +} > + > +static struct acpi_pptt_processor *fetch_pptt_node( > + struct acpi_table_header *table_hdr, u32 pptt_ref) > +{ > + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); > +} > + > +static struct acpi_pptt_cache *fetch_pptt_cache( > + struct acpi_table_header *table_hdr, u32 pptt_ref) > +{ > + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); > +} > + > +static struct acpi_subtable_header *acpi_get_pptt_resource( > + struct acpi_table_header *table_hdr, > + struct acpi_pptt_processor *node, int resource) > +{ > + u32 ref; > + > + if (resource >= node->number_of_priv_resources) > + return NULL; > + > + ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) + > + sizeof(u32) * resource); > + > + return fetch_pptt_subtable(table_hdr, ref); > +} > + > +/* > + * given a pptt resource, verify that it is a cache node, then walk > + * down each level of caches, counting how many levels are found > + * as well as checking the cache type (icache, dcache, unified). If a > + * level & type match, then we set found, and continue the search. > + * Once the entire cache branch has been walked return its max > + * depth. > + */ > +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, > + int local_level, > + struct acpi_subtable_header *res, > + struct acpi_pptt_cache **found, > + int level, int type) > +{ > + struct acpi_pptt_cache *cache; > + > + if (res->type != ACPI_PPTT_TYPE_CACHE) > + return 0; > + > + cache = (struct acpi_pptt_cache *) res; > + while (cache) { > + local_level++; > + > + if ((local_level == level) && > + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) && > + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) { > + if (*found != NULL) > + pr_err("Found duplicate cache level/type unable to determine uniqueness\n"); > + > + pr_debug("Found cache @ level %d\n", level); > + *found = cache; > + /* > + * continue looking at this node's resource list > + * to verify that we don't find a duplicate > + * cache node. > + */ > + } > + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); > + } > + return local_level; > +} > + > +/* > + * Given a CPU node look for cache levels that exist at this level, and then > + * for each cache node, count how many levels exist below (logically above) it. > + * If a level and type are specified, and we find that level/type, abort > + * processing and return the acpi_pptt_cache structure. > + */ > +static struct acpi_pptt_cache *acpi_find_cache_level( > + struct acpi_table_header *table_hdr, > + struct acpi_pptt_processor *cpu_node, > + int *starting_level, int level, int type) > +{ > + struct acpi_subtable_header *res; > + int number_of_levels = *starting_level; > + int resource = 0; > + struct acpi_pptt_cache *ret = NULL; > + int local_level; > + > + /* walk down from processor node */ > + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { > + resource++; > + > + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, > + res, &ret, level, type); > + /* > + * we are looking for the max depth. Since its potentially > + * possible for a given node to have resources with differing > + * depths verify that the depth we have found is the largest. > + */ > + if (number_of_levels < local_level) > + number_of_levels = local_level; > + } > + if (number_of_levels > *starting_level) > + *starting_level = number_of_levels; > + > + return ret; > +} > + > +/* > + * given a processor node containing a processing unit, walk into it and count > + * how many levels exist solely for it, and then walk up each level until we hit > + * the root node (ignore the package level because it may be possible to have > + * caches that exist across packages). Count the number of cache levels that > + * exist at each level on the way up. > + */ > +static int acpi_process_node(struct acpi_table_header *table_hdr, > + struct acpi_pptt_processor *cpu_node) > +{ > + int total_levels = 0; > + > + do { > + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); > + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); > + } while (cpu_node); > + > + return total_levels; > +} > + > +/* > + * Find the subtable entry describing the provided processor > + */ > +static struct acpi_pptt_processor *acpi_find_processor_node( > + struct acpi_table_header *table_hdr, > + u32 acpi_cpu_id) > +{ > + struct acpi_subtable_header *entry; > + unsigned long table_end; > + struct acpi_pptt_processor *cpu_node; > + > + table_end = (unsigned long)table_hdr + table_hdr->length; > + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + > + sizeof(struct acpi_table_pptt)); > + > + /* find the processor structure associated with this cpuid */ > + while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) { > + cpu_node = (struct acpi_pptt_processor *)entry; > + > + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) && > + (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) { > + pr_debug("checking phy_cpu_id %d against acpi id %d\n", > + acpi_cpu_id, cpu_node->acpi_processor_id); > + if (acpi_cpu_id == cpu_node->acpi_processor_id) { > + /* found the correct entry */ > + pr_debug("match found!\n"); > + return (struct acpi_pptt_processor *)entry; > + } > + } > + > + if (entry->length == 0) { > + pr_err("Invalid zero length subtable\n"); > + break; > + } > + entry = (struct acpi_subtable_header *) > + ((u8 *)entry + entry->length); > + } > + > + return NULL; > +} > + > +/* > + * Given a acpi_pptt_processor node, walk up until we identify the > + * package that the node is associated with or we run out of levels > + * to request. > + */ > +static struct acpi_pptt_processor *acpi_find_processor_package_id( > + struct acpi_table_header *table_hdr, > + struct acpi_pptt_processor *cpu, > + int level) > +{ > + struct acpi_pptt_processor *prev_node; > + > + while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) { > + pr_debug("level %d\n", level); > + prev_node = fetch_pptt_node(table_hdr, cpu->parent); > + if (prev_node == NULL) > + break; > + cpu = prev_node; > + level--; > + } > + return cpu; > +} > + > +static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id) > +{ > + int number_of_levels = 0; > + struct acpi_pptt_processor *cpu; > + > + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); > + if (cpu) > + number_of_levels = acpi_process_node(table_hdr, cpu); > + > + return number_of_levels; > +} > + > +#define ACPI_6_2_CACHE_TYPE_DATA (0x0) > +#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2) > +#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3) > +#define ACPI_6_2_CACHE_POLICY_WB (0x0) > +#define ACPI_6_2_CACHE_POLICY_WT (1<<4) > +#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0) > +#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01) > +#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02) > + > +static u8 acpi_cache_type(enum cache_type type) > +{ > + switch (type) { > + case CACHE_TYPE_DATA: > + pr_debug("Looking for data cache\n"); > + return ACPI_6_2_CACHE_TYPE_DATA; > + case CACHE_TYPE_INST: > + pr_debug("Looking for instruction cache\n"); > + return ACPI_6_2_CACHE_TYPE_INSTR; > + default: > + pr_debug("Unknown cache type, assume unified\n"); > + case CACHE_TYPE_UNIFIED: > + pr_debug("Looking for unified cache\n"); > + return ACPI_6_2_CACHE_TYPE_UNIFIED; > + } > +} > + > +/* find the ACPI node describing the cache type/level for the given CPU */ > +static struct acpi_pptt_cache *acpi_find_cache_node( > + struct acpi_table_header *table_hdr, u32 acpi_cpu_id, > + enum cache_type type, unsigned int level, > + struct acpi_pptt_processor **node) > +{ > + int total_levels = 0; > + struct acpi_pptt_cache *found = NULL; > + struct acpi_pptt_processor *cpu_node; > + u8 acpi_type = acpi_cache_type(type); > + > + pr_debug("Looking for CPU %d's level %d cache type %d\n", > + acpi_cpu_id, level, acpi_type); > + > + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); > + if (!cpu_node) > + return NULL; > + > + do { > + found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type); > + *node = cpu_node; > + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); > + } while ((cpu_node) && (!found)); > + > + return found; > +} > + > +int acpi_find_last_cache_level(unsigned int cpu) > +{ > + u32 acpi_cpu_id; > + struct acpi_table_header *table; > + int number_of_levels = 0; > + acpi_status status; > + > + pr_debug("Cache Setup find last level cpu=%d\n", cpu); > + > + acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; > + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); > + if (ACPI_FAILURE(status)) { > + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); > + } else { > + number_of_levels = acpi_parse_pptt(table, acpi_cpu_id); > + acpi_put_table(table); > + } > + pr_debug("Cache Setup find last level level=%d\n", number_of_levels); > + > + return number_of_levels; > +} > + > +/* > + * The ACPI spec implies that the fields in the cache structures are used to > + * extend and correct the information probed from the hardware. In the case > + * of arm64 the CCSIDR probing has been removed because it might be incorrect. > + */ > +static void update_cache_properties(struct cacheinfo *this_leaf, > + struct acpi_pptt_cache *found_cache, > + struct acpi_pptt_processor *cpu_node) > +{ > + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) > + this_leaf->size = found_cache->size; > + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) > + this_leaf->coherency_line_size = found_cache->line_size; > + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) > + this_leaf->number_of_sets = found_cache->number_of_sets; > + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) > + this_leaf->ways_of_associativity = found_cache->associativity; > + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) > + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { > + case ACPI_6_2_CACHE_POLICY_WT: > + this_leaf->attributes = CACHE_WRITE_THROUGH; > + break; > + case ACPI_6_2_CACHE_POLICY_WB: > + this_leaf->attributes = CACHE_WRITE_BACK; > + break; > + default: > + pr_err("Unknown ACPI cache policy %d\n", > + found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY); > + } > + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) > + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { > + case ACPI_6_2_CACHE_READ_ALLOCATE: > + this_leaf->attributes |= CACHE_READ_ALLOCATE; > + break; > + case ACPI_6_2_CACHE_WRITE_ALLOCATE: > + this_leaf->attributes |= CACHE_WRITE_ALLOCATE; > + break; > + case ACPI_6_2_CACHE_RW_ALLOCATE: > + this_leaf->attributes |= > + CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE; > + break; > + default: > + pr_err("Unknown ACPI cache allocation policy %d\n", > + found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE); > + } > +} > + > +static void cache_setup_acpi_cpu(struct acpi_table_header *table, > + unsigned int cpu) > +{ > + struct acpi_pptt_cache *found_cache; > + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); > + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; > + struct cacheinfo *this_leaf; > + unsigned int index = 0; > + struct acpi_pptt_processor *cpu_node = NULL; > + > + while (index < get_cpu_cacheinfo(cpu)->num_leaves) { > + this_leaf = this_cpu_ci->info_list + index; > + found_cache = acpi_find_cache_node(table, acpi_cpu_id, > + this_leaf->type, > + this_leaf->level, > + &cpu_node); > + pr_debug("found = %p %p\n", found_cache, cpu_node); > + if (found_cache) > + update_cache_properties(this_leaf, > + found_cache, > + cpu_node); > + > + index++; > + } > +} > + > +static int topology_setup_acpi_cpu(struct acpi_table_header *table, > + unsigned int cpu, int level) > +{ > + struct acpi_pptt_processor *cpu_node; > + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; > + > + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); > + if (cpu_node) { > + cpu_node = acpi_find_processor_package_id(table, cpu_node, level); > + return (int)((u8 *)cpu_node - (u8 *)table); > + } > + pr_err_once("PPTT table found, but unable to locate core for %d\n", > + cpu); > + return -ENOENT; Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR. 'store_cpu_topology()' determine whether cpu topology has been populated by checking whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR. Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero, we read cpu topo info from MPIDR. > +} > + > +/* > + * simply assign a ACPI cache entry to each known CPU cache entry > + * determining which entries are shared is done later. > + */ > +int cache_setup_acpi(unsigned int cpu) > +{ > + struct acpi_table_header *table; > + acpi_status status; > + > + pr_debug("Cache Setup ACPI cpu %d\n", cpu); > + > + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); > + if (ACPI_FAILURE(status)) { > + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); > + return -ENOENT; > + } > + > + cache_setup_acpi_cpu(table, cpu); > + acpi_put_table(table); > + > + return status; > +} > + > +/* > + * Determine a topology unique ID for each thread/core/cluster/socket/etc. > + * This ID can then be used to group peers. > + */ > +int setup_acpi_cpu_topology(unsigned int cpu, int level) > +{ > + struct acpi_table_header *table; > + acpi_status status; > + int retval; Can we add a static int array to record already assigned id for each level? So that we can count the id starting from zero. And also the id can be successive. > + > + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); > + if (ACPI_FAILURE(status)) { > + pr_err_once("No PPTT table found, cpu topology may be inaccurate\n"); > + return -ENOENT; > + } > + retval = topology_setup_acpi_cpu(table, cpu, level); > + pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n", > + cpu, level, retval); > + acpi_put_table(table); > + > + return retval; > +} >
Hi, On 09/20/2017 02:15 AM, Xiongfeng Wang wrote: > Hi Jeremy, > > On 2017/9/20 2:47, Jeremy Linton wrote: >> ACPI 6.2 adds a new table, which describes how processing units >> are related to each other in tree like fashion. Caches are >> also sprinkled throughout the tree and describe the properties >> of the caches in relation to other caches and processing units. >> >> Add the code to parse the cache hierarchy and report the total >> number of levels of cache for a given core using >> acpi_find_last_cache_level() as well as fill out the individual >> cores cache information with cache_setup_acpi() once the >> cpu_cacheinfo structure has been populated by the arch specific >> code. >> >> Further, report peers in the topology using setup_acpi_cpu_topology() >> to report a unique ID for each processing unit at a given level >> in the tree. These unique id's can then be used to match related >> processing units which exist as threads, COD (clusters >> on die), within a given package, etc. >> >> Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> >> --- >> drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++ >> 1 file changed, 458 insertions(+) >> create mode 100644 drivers/acpi/pptt.c >> >> diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c >> new file mode 100644 >> index 000000000000..f7694fa1e0bd >> --- /dev/null >> +++ b/drivers/acpi/pptt.c >> @@ -0,0 +1,458 @@ >> +/* >> + * Copyright (C) 2017, ARM >> + * >> + * This program is free software; you can redistribute it and/or modify it >> + * under the terms and conditions of the GNU General Public License, >> + * version 2, as published by the Free Software Foundation. >> + * >> + * This program is distributed in the hope it will be useful, but WITHOUT >> + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or >> + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for >> + * more details. >> + * >> + * This file implements parsing of Processor Properties Topology Table (PPTT) >> + * which is optionally used to describe the processor and cache topology. >> + * Due to the relative pointers used throughout the table, this doesn't >> + * leverage the existing subtable parsing in the kernel. >> + */ >> +#define pr_fmt(fmt) "ACPI PPTT: " fmt >> + >> +#include <linux/acpi.h> >> +#include <linux/cacheinfo.h> >> +#include <acpi/processor.h> >> + >> +/* >> + * Given the PPTT table, find and verify that the subtable entry >> + * is located within the table >> + */ >> +static struct acpi_subtable_header *fetch_pptt_subtable( >> + struct acpi_table_header *table_hdr, u32 pptt_ref) >> +{ >> + struct acpi_subtable_header *entry; >> + >> + /* there isn't a subtable at reference 0 */ >> + if (!pptt_ref) >> + return NULL; >> + >> + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) >> + return NULL; >> + >> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref); >> + >> + if (pptt_ref + entry->length > table_hdr->length) >> + return NULL; >> + >> + return entry; >> +} >> + >> +static struct acpi_pptt_processor *fetch_pptt_node( >> + struct acpi_table_header *table_hdr, u32 pptt_ref) >> +{ >> + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); >> +} >> + >> +static struct acpi_pptt_cache *fetch_pptt_cache( >> + struct acpi_table_header *table_hdr, u32 pptt_ref) >> +{ >> + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); >> +} >> + >> +static struct acpi_subtable_header *acpi_get_pptt_resource( >> + struct acpi_table_header *table_hdr, >> + struct acpi_pptt_processor *node, int resource) >> +{ >> + u32 ref; >> + >> + if (resource >= node->number_of_priv_resources) >> + return NULL; >> + >> + ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) + >> + sizeof(u32) * resource); >> + >> + return fetch_pptt_subtable(table_hdr, ref); >> +} >> + >> +/* >> + * given a pptt resource, verify that it is a cache node, then walk >> + * down each level of caches, counting how many levels are found >> + * as well as checking the cache type (icache, dcache, unified). If a >> + * level & type match, then we set found, and continue the search. >> + * Once the entire cache branch has been walked return its max >> + * depth. >> + */ >> +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, >> + int local_level, >> + struct acpi_subtable_header *res, >> + struct acpi_pptt_cache **found, >> + int level, int type) >> +{ >> + struct acpi_pptt_cache *cache; >> + >> + if (res->type != ACPI_PPTT_TYPE_CACHE) >> + return 0; >> + >> + cache = (struct acpi_pptt_cache *) res; >> + while (cache) { >> + local_level++; >> + >> + if ((local_level == level) && >> + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) && >> + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) { >> + if (*found != NULL) >> + pr_err("Found duplicate cache level/type unable to determine uniqueness\n"); >> + >> + pr_debug("Found cache @ level %d\n", level); >> + *found = cache; >> + /* >> + * continue looking at this node's resource list >> + * to verify that we don't find a duplicate >> + * cache node. >> + */ >> + } >> + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); >> + } >> + return local_level; >> +} >> + >> +/* >> + * Given a CPU node look for cache levels that exist at this level, and then >> + * for each cache node, count how many levels exist below (logically above) it. >> + * If a level and type are specified, and we find that level/type, abort >> + * processing and return the acpi_pptt_cache structure. >> + */ >> +static struct acpi_pptt_cache *acpi_find_cache_level( >> + struct acpi_table_header *table_hdr, >> + struct acpi_pptt_processor *cpu_node, >> + int *starting_level, int level, int type) >> +{ >> + struct acpi_subtable_header *res; >> + int number_of_levels = *starting_level; >> + int resource = 0; >> + struct acpi_pptt_cache *ret = NULL; >> + int local_level; >> + >> + /* walk down from processor node */ >> + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { >> + resource++; >> + >> + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, >> + res, &ret, level, type); >> + /* >> + * we are looking for the max depth. Since its potentially >> + * possible for a given node to have resources with differing >> + * depths verify that the depth we have found is the largest. >> + */ >> + if (number_of_levels < local_level) >> + number_of_levels = local_level; >> + } >> + if (number_of_levels > *starting_level) >> + *starting_level = number_of_levels; >> + >> + return ret; >> +} >> + >> +/* >> + * given a processor node containing a processing unit, walk into it and count >> + * how many levels exist solely for it, and then walk up each level until we hit >> + * the root node (ignore the package level because it may be possible to have >> + * caches that exist across packages). Count the number of cache levels that >> + * exist at each level on the way up. >> + */ >> +static int acpi_process_node(struct acpi_table_header *table_hdr, >> + struct acpi_pptt_processor *cpu_node) >> +{ >> + int total_levels = 0; >> + >> + do { >> + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); >> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); >> + } while (cpu_node); >> + >> + return total_levels; >> +} >> + >> +/* >> + * Find the subtable entry describing the provided processor >> + */ >> +static struct acpi_pptt_processor *acpi_find_processor_node( >> + struct acpi_table_header *table_hdr, >> + u32 acpi_cpu_id) >> +{ >> + struct acpi_subtable_header *entry; >> + unsigned long table_end; >> + struct acpi_pptt_processor *cpu_node; >> + >> + table_end = (unsigned long)table_hdr + table_hdr->length; >> + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + >> + sizeof(struct acpi_table_pptt)); >> + >> + /* find the processor structure associated with this cpuid */ >> + while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) { >> + cpu_node = (struct acpi_pptt_processor *)entry; >> + >> + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) && >> + (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) { >> + pr_debug("checking phy_cpu_id %d against acpi id %d\n", >> + acpi_cpu_id, cpu_node->acpi_processor_id); >> + if (acpi_cpu_id == cpu_node->acpi_processor_id) { >> + /* found the correct entry */ >> + pr_debug("match found!\n"); >> + return (struct acpi_pptt_processor *)entry; >> + } >> + } >> + >> + if (entry->length == 0) { >> + pr_err("Invalid zero length subtable\n"); >> + break; >> + } >> + entry = (struct acpi_subtable_header *) >> + ((u8 *)entry + entry->length); >> + } >> + >> + return NULL; >> +} >> + >> +/* >> + * Given a acpi_pptt_processor node, walk up until we identify the >> + * package that the node is associated with or we run out of levels >> + * to request. >> + */ >> +static struct acpi_pptt_processor *acpi_find_processor_package_id( >> + struct acpi_table_header *table_hdr, >> + struct acpi_pptt_processor *cpu, >> + int level) >> +{ >> + struct acpi_pptt_processor *prev_node; >> + >> + while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) { >> + pr_debug("level %d\n", level); >> + prev_node = fetch_pptt_node(table_hdr, cpu->parent); >> + if (prev_node == NULL) >> + break; >> + cpu = prev_node; >> + level--; >> + } >> + return cpu; >> +} >> + >> +static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id) >> +{ >> + int number_of_levels = 0; >> + struct acpi_pptt_processor *cpu; >> + >> + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); >> + if (cpu) >> + number_of_levels = acpi_process_node(table_hdr, cpu); >> + >> + return number_of_levels; >> +} >> + >> +#define ACPI_6_2_CACHE_TYPE_DATA (0x0) >> +#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2) >> +#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3) >> +#define ACPI_6_2_CACHE_POLICY_WB (0x0) >> +#define ACPI_6_2_CACHE_POLICY_WT (1<<4) >> +#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0) >> +#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01) >> +#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02) >> + >> +static u8 acpi_cache_type(enum cache_type type) >> +{ >> + switch (type) { >> + case CACHE_TYPE_DATA: >> + pr_debug("Looking for data cache\n"); >> + return ACPI_6_2_CACHE_TYPE_DATA; >> + case CACHE_TYPE_INST: >> + pr_debug("Looking for instruction cache\n"); >> + return ACPI_6_2_CACHE_TYPE_INSTR; >> + default: >> + pr_debug("Unknown cache type, assume unified\n"); >> + case CACHE_TYPE_UNIFIED: >> + pr_debug("Looking for unified cache\n"); >> + return ACPI_6_2_CACHE_TYPE_UNIFIED; >> + } >> +} >> + >> +/* find the ACPI node describing the cache type/level for the given CPU */ >> +static struct acpi_pptt_cache *acpi_find_cache_node( >> + struct acpi_table_header *table_hdr, u32 acpi_cpu_id, >> + enum cache_type type, unsigned int level, >> + struct acpi_pptt_processor **node) >> +{ >> + int total_levels = 0; >> + struct acpi_pptt_cache *found = NULL; >> + struct acpi_pptt_processor *cpu_node; >> + u8 acpi_type = acpi_cache_type(type); >> + >> + pr_debug("Looking for CPU %d's level %d cache type %d\n", >> + acpi_cpu_id, level, acpi_type); >> + >> + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); >> + if (!cpu_node) >> + return NULL; >> + >> + do { >> + found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type); >> + *node = cpu_node; >> + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); >> + } while ((cpu_node) && (!found)); >> + >> + return found; >> +} >> + >> +int acpi_find_last_cache_level(unsigned int cpu) >> +{ >> + u32 acpi_cpu_id; >> + struct acpi_table_header *table; >> + int number_of_levels = 0; >> + acpi_status status; >> + >> + pr_debug("Cache Setup find last level cpu=%d\n", cpu); >> + >> + acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; >> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); >> + if (ACPI_FAILURE(status)) { >> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); >> + } else { >> + number_of_levels = acpi_parse_pptt(table, acpi_cpu_id); >> + acpi_put_table(table); >> + } >> + pr_debug("Cache Setup find last level level=%d\n", number_of_levels); >> + >> + return number_of_levels; >> +} >> + >> +/* >> + * The ACPI spec implies that the fields in the cache structures are used to >> + * extend and correct the information probed from the hardware. In the case >> + * of arm64 the CCSIDR probing has been removed because it might be incorrect. >> + */ >> +static void update_cache_properties(struct cacheinfo *this_leaf, >> + struct acpi_pptt_cache *found_cache, >> + struct acpi_pptt_processor *cpu_node) >> +{ >> + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) >> + this_leaf->size = found_cache->size; >> + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) >> + this_leaf->coherency_line_size = found_cache->line_size; >> + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) >> + this_leaf->number_of_sets = found_cache->number_of_sets; >> + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) >> + this_leaf->ways_of_associativity = found_cache->associativity; >> + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) >> + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { >> + case ACPI_6_2_CACHE_POLICY_WT: >> + this_leaf->attributes = CACHE_WRITE_THROUGH; >> + break; >> + case ACPI_6_2_CACHE_POLICY_WB: >> + this_leaf->attributes = CACHE_WRITE_BACK; >> + break; >> + default: >> + pr_err("Unknown ACPI cache policy %d\n", >> + found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY); >> + } >> + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) >> + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { >> + case ACPI_6_2_CACHE_READ_ALLOCATE: >> + this_leaf->attributes |= CACHE_READ_ALLOCATE; >> + break; >> + case ACPI_6_2_CACHE_WRITE_ALLOCATE: >> + this_leaf->attributes |= CACHE_WRITE_ALLOCATE; >> + break; >> + case ACPI_6_2_CACHE_RW_ALLOCATE: >> + this_leaf->attributes |= >> + CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE; >> + break; >> + default: >> + pr_err("Unknown ACPI cache allocation policy %d\n", >> + found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE); >> + } >> +} >> + >> +static void cache_setup_acpi_cpu(struct acpi_table_header *table, >> + unsigned int cpu) >> +{ >> + struct acpi_pptt_cache *found_cache; >> + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); >> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; >> + struct cacheinfo *this_leaf; >> + unsigned int index = 0; >> + struct acpi_pptt_processor *cpu_node = NULL; >> + >> + while (index < get_cpu_cacheinfo(cpu)->num_leaves) { >> + this_leaf = this_cpu_ci->info_list + index; >> + found_cache = acpi_find_cache_node(table, acpi_cpu_id, >> + this_leaf->type, >> + this_leaf->level, >> + &cpu_node); >> + pr_debug("found = %p %p\n", found_cache, cpu_node); >> + if (found_cache) >> + update_cache_properties(this_leaf, >> + found_cache, >> + cpu_node); >> + >> + index++; >> + } >> +} >> + >> +static int topology_setup_acpi_cpu(struct acpi_table_header *table, >> + unsigned int cpu, int level) >> +{ >> + struct acpi_pptt_processor *cpu_node; >> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; >> + >> + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); >> + if (cpu_node) { >> + cpu_node = acpi_find_processor_package_id(table, cpu_node, level); >> + return (int)((u8 *)cpu_node - (u8 *)table); >> + } >> + pr_err_once("PPTT table found, but unable to locate core for %d\n", >> + cpu); >> + return -ENOENT; > > Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR. > 'store_cpu_topology()' determine whether cpu topology has been populated by checking > whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR. > Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero, > we read cpu topo info from MPIDR. ? I will retest this, but any negative return from setup_acpi_topology() for the initial node (subsequent requests should minimally duplicate the cpu node rather than failing) request, should result in a call to reset_cpu_topology(), and the information being sourced from the MPIDR in store_cpu_topology(). There are various ways the tree could be "damaged" but if all the system cpus have matching valid acpi_id/cpu nodes, then that reflects a valid topology and there really isn't enough information to decide if its damaged. The one case where this isn't accurate is missing socket identifiers, but the code actually handles this as well as the lack of missing cluster/thread ids (which don't exist in the standard). > >> +} >> + >> +/* >> + * simply assign a ACPI cache entry to each known CPU cache entry >> + * determining which entries are shared is done later. >> + */ >> +int cache_setup_acpi(unsigned int cpu) >> +{ >> + struct acpi_table_header *table; >> + acpi_status status; >> + >> + pr_debug("Cache Setup ACPI cpu %d\n", cpu); >> + >> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); >> + if (ACPI_FAILURE(status)) { >> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); >> + return -ENOENT; >> + } >> + >> + cache_setup_acpi_cpu(table, cpu); >> + acpi_put_table(table); >> + >> + return status; >> +} >> + >> +/* >> + * Determine a topology unique ID for each thread/core/cluster/socket/etc. >> + * This ID can then be used to group peers. >> + */ >> +int setup_acpi_cpu_topology(unsigned int cpu, int level) >> +{ >> + struct acpi_table_header *table; >> + acpi_status status; >> + int retval; > > Can we add a static int array to record already assigned id for each level? > So that we can count the id starting from zero. And also the id can be successive. I don't like the idea of a node<->generated_id array/map in this module, although I've considered a number of ways to create more normalized values. Particularly, the one area that might be useful is utilizing the acpi id for the cores, which is problematic in the MT case. One of my other alternative ideas was to plug a unique node id into a reserved field in the table as the node is traversed. That idea is a little evil, and really should be part of the ACPI standard so the firmware is providing the ID's rather than dependent on the traversal order of the tree. If it turns out that these ID's need to be zero based, or some other limitation I would prefer just renumbering them in update_siblings_mask() or parse_acpi_topology(). I hacked together a patch to renumber the package_id yesterday, but i'm pretty sure I've seen (non arm) machines with odd package/core ids in the past, and I don't really see anything in the ABI the dictating this. Let me clean it up a bit and I can post it as an additional patch on top of the PPTT patches. So, is this an actual use case/problem, or its just an "appearance" type of thing? > >> + >> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); >> + if (ACPI_FAILURE(status)) { >> + pr_err_once("No PPTT table found, cpu topology may be inaccurate\n"); >> + return -ENOENT; >> + } >> + retval = topology_setup_acpi_cpu(table, cpu, level); >> + pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n", >> + cpu, level, retval); >> + acpi_put_table(table); >> + >> + return retval; >> +} >> >
Hi Jeremy, On 2017/9/22 2:48, Jeremy Linton wrote: > Hi, > > On 09/20/2017 02:15 AM, Xiongfeng Wang wrote: >> Hi Jeremy, >> >> On 2017/9/20 2:47, Jeremy Linton wrote: >>> ACPI 6.2 adds a new table, which describes how processing units >>> are related to each other in tree like fashion. Caches are >>> also sprinkled throughout the tree and describe the properties >>> of the caches in relation to other caches and processing units. >>> >>> Add the code to parse the cache hierarchy and report the total >>> number of levels of cache for a given core using >>> acpi_find_last_cache_level() as well as fill out the individual >>> cores cache information with cache_setup_acpi() once the >>> cpu_cacheinfo structure has been populated by the arch specific >>> code. >>> >>> Further, report peers in the topology using setup_acpi_cpu_topology() >>> to report a unique ID for each processing unit at a given level >>> in the tree. These unique id's can then be used to match related >>> processing units which exist as threads, COD (clusters >>> on die), within a given package, etc. >>> >>> + >>> +static int topology_setup_acpi_cpu(struct acpi_table_header *table, >>> + unsigned int cpu, int level) >>> +{ >>> + struct acpi_pptt_processor *cpu_node; >>> + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; >>> + >>> + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); >>> + if (cpu_node) { >>> + cpu_node = acpi_find_processor_package_id(table, cpu_node, level); >>> + return (int)((u8 *)cpu_node - (u8 *)table); >>> + } >>> + pr_err_once("PPTT table found, but unable to locate core for %d\n", >>> + cpu); >>> + return -ENOENT; >> >> Can we return -1 when PPTT doesn't exist? So that we can still get topo info from MPIDR. >> 'store_cpu_topology()' determine whether cpu topology has been populated by checking >> whether cluster_id is -1. If cluster_id is not -1, it won't read cpu topo info from MPIDR. >> Or maybe we can change 'store_cpu_topology()' as well. If cluster_id is less than zero, >> we read cpu topo info from MPIDR. > > ? I will retest this, but any negative return from setup_acpi_topology() for the initial node (subsequent requests should minimally duplicate the cpu node rather than failing) request, should result in a call to reset_cpu_topology(), and the information being sourced from the MPIDR in store_cpu_topology(). There are various ways the tree could be "damaged" but if all the system cpus have matching valid acpi_id/cpu nodes, then that reflects a valid topology and there really isn't enough information to decide if its damaged. The one case where this isn't accurate is missing socket identifiers, but the code actually handles this as well as the lack of missing cluster/thread ids (which don't exist in the standard). > Yes, you are right. I didn't notice the function reset_cpu_topology() before. Thanks for your explanation. >> >>> +} >>> + >>> +/* >>> + * simply assign a ACPI cache entry to each known CPU cache entry >>> + * determining which entries are shared is done later. >>> + */ >>> +int cache_setup_acpi(unsigned int cpu) >>> +{ >>> + struct acpi_table_header *table; >>> + acpi_status status; >>> + >>> + pr_debug("Cache Setup ACPI cpu %d\n", cpu); >>> + >>> + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); >>> + if (ACPI_FAILURE(status)) { >>> + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); >>> + return -ENOENT; >>> + } >>> + >>> + cache_setup_acpi_cpu(table, cpu); >>> + acpi_put_table(table); >>> + >>> + return status; >>> +} >>> + >>> +/* >>> + * Determine a topology unique ID for each thread/core/cluster/socket/etc. >>> + * This ID can then be used to group peers. >>> + */ >>> +int setup_acpi_cpu_topology(unsigned int cpu, int level) >>> +{ >>> + struct acpi_table_header *table; >>> + acpi_status status; >>> + int retval; >> >> Can we add a static int array to record already assigned id for each level? >> So that we can count the id starting from zero. And also the id can be successive. > > I don't like the idea of a node<->generated_id array/map in this module, although I've considered a number of ways to create more normalized values. Particularly, the one area that might be useful is utilizing the acpi id for the cores, which is problematic in the MT case. One of my other alternative ideas was to plug a unique node id into a reserved field in the table as the node is traversed. That idea is a little evil, and really should be part of the ACPI standard so the firmware is providing the ID's rather than dependent on the traversal order of the tree. > > If it turns out that these ID's need to be zero based, or some other limitation I would prefer just renumbering them in update_siblings_mask() or parse_acpi_topology(). I hacked together a patch to renumber the package_id yesterday, but i'm pretty sure I've seen (non arm) machines with odd package/core ids in the past, and I don't really see anything in the ABI the dictating this. Let me clean it up a bit and I can post it as an additional patch on top of the PPTT patches. > Yes, I agree. Renumbering the IDs in parse_acpi_topology() is better. > So, is this an actual use case/problem, or its just an "appearance" type of thing? > It is not an actual use problem, just an "appearance". Thanks, Xiongfeng Wang
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c new file mode 100644 index 000000000000..f7694fa1e0bd --- /dev/null +++ b/drivers/acpi/pptt.c @@ -0,0 +1,458 @@ +/* + * Copyright (C) 2017, ARM + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * This file implements parsing of Processor Properties Topology Table (PPTT) + * which is optionally used to describe the processor and cache topology. + * Due to the relative pointers used throughout the table, this doesn't + * leverage the existing subtable parsing in the kernel. + */ +#define pr_fmt(fmt) "ACPI PPTT: " fmt + +#include <linux/acpi.h> +#include <linux/cacheinfo.h> +#include <acpi/processor.h> + +/* + * Given the PPTT table, find and verify that the subtable entry + * is located within the table + */ +static struct acpi_subtable_header *fetch_pptt_subtable( + struct acpi_table_header *table_hdr, u32 pptt_ref) +{ + struct acpi_subtable_header *entry; + + /* there isn't a subtable at reference 0 */ + if (!pptt_ref) + return NULL; + + if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) + return NULL; + + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + pptt_ref); + + if (pptt_ref + entry->length > table_hdr->length) + return NULL; + + return entry; +} + +static struct acpi_pptt_processor *fetch_pptt_node( + struct acpi_table_header *table_hdr, u32 pptt_ref) +{ + return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); +} + +static struct acpi_pptt_cache *fetch_pptt_cache( + struct acpi_table_header *table_hdr, u32 pptt_ref) +{ + return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); +} + +static struct acpi_subtable_header *acpi_get_pptt_resource( + struct acpi_table_header *table_hdr, + struct acpi_pptt_processor *node, int resource) +{ + u32 ref; + + if (resource >= node->number_of_priv_resources) + return NULL; + + ref = *(u32 *)((u8 *)node + sizeof(struct acpi_pptt_processor) + + sizeof(u32) * resource); + + return fetch_pptt_subtable(table_hdr, ref); +} + +/* + * given a pptt resource, verify that it is a cache node, then walk + * down each level of caches, counting how many levels are found + * as well as checking the cache type (icache, dcache, unified). If a + * level & type match, then we set found, and continue the search. + * Once the entire cache branch has been walked return its max + * depth. + */ +static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, + int local_level, + struct acpi_subtable_header *res, + struct acpi_pptt_cache **found, + int level, int type) +{ + struct acpi_pptt_cache *cache; + + if (res->type != ACPI_PPTT_TYPE_CACHE) + return 0; + + cache = (struct acpi_pptt_cache *) res; + while (cache) { + local_level++; + + if ((local_level == level) && + (cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) && + ((cache->attributes & ACPI_PPTT_MASK_CACHE_TYPE) == type)) { + if (*found != NULL) + pr_err("Found duplicate cache level/type unable to determine uniqueness\n"); + + pr_debug("Found cache @ level %d\n", level); + *found = cache; + /* + * continue looking at this node's resource list + * to verify that we don't find a duplicate + * cache node. + */ + } + cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); + } + return local_level; +} + +/* + * Given a CPU node look for cache levels that exist at this level, and then + * for each cache node, count how many levels exist below (logically above) it. + * If a level and type are specified, and we find that level/type, abort + * processing and return the acpi_pptt_cache structure. + */ +static struct acpi_pptt_cache *acpi_find_cache_level( + struct acpi_table_header *table_hdr, + struct acpi_pptt_processor *cpu_node, + int *starting_level, int level, int type) +{ + struct acpi_subtable_header *res; + int number_of_levels = *starting_level; + int resource = 0; + struct acpi_pptt_cache *ret = NULL; + int local_level; + + /* walk down from processor node */ + while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { + resource++; + + local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, + res, &ret, level, type); + /* + * we are looking for the max depth. Since its potentially + * possible for a given node to have resources with differing + * depths verify that the depth we have found is the largest. + */ + if (number_of_levels < local_level) + number_of_levels = local_level; + } + if (number_of_levels > *starting_level) + *starting_level = number_of_levels; + + return ret; +} + +/* + * given a processor node containing a processing unit, walk into it and count + * how many levels exist solely for it, and then walk up each level until we hit + * the root node (ignore the package level because it may be possible to have + * caches that exist across packages). Count the number of cache levels that + * exist at each level on the way up. + */ +static int acpi_process_node(struct acpi_table_header *table_hdr, + struct acpi_pptt_processor *cpu_node) +{ + int total_levels = 0; + + do { + acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); + } while (cpu_node); + + return total_levels; +} + +/* + * Find the subtable entry describing the provided processor + */ +static struct acpi_pptt_processor *acpi_find_processor_node( + struct acpi_table_header *table_hdr, + u32 acpi_cpu_id) +{ + struct acpi_subtable_header *entry; + unsigned long table_end; + struct acpi_pptt_processor *cpu_node; + + table_end = (unsigned long)table_hdr + table_hdr->length; + entry = (struct acpi_subtable_header *)((u8 *)table_hdr + + sizeof(struct acpi_table_pptt)); + + /* find the processor structure associated with this cpuid */ + while (((unsigned long)entry) + sizeof(struct acpi_subtable_header) < table_end) { + cpu_node = (struct acpi_pptt_processor *)entry; + + if ((entry->type == ACPI_PPTT_TYPE_PROCESSOR) && + (cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)) { + pr_debug("checking phy_cpu_id %d against acpi id %d\n", + acpi_cpu_id, cpu_node->acpi_processor_id); + if (acpi_cpu_id == cpu_node->acpi_processor_id) { + /* found the correct entry */ + pr_debug("match found!\n"); + return (struct acpi_pptt_processor *)entry; + } + } + + if (entry->length == 0) { + pr_err("Invalid zero length subtable\n"); + break; + } + entry = (struct acpi_subtable_header *) + ((u8 *)entry + entry->length); + } + + return NULL; +} + +/* + * Given a acpi_pptt_processor node, walk up until we identify the + * package that the node is associated with or we run out of levels + * to request. + */ +static struct acpi_pptt_processor *acpi_find_processor_package_id( + struct acpi_table_header *table_hdr, + struct acpi_pptt_processor *cpu, + int level) +{ + struct acpi_pptt_processor *prev_node; + + while (cpu && level && !(cpu->flags & ACPI_PPTT_PHYSICAL_PACKAGE)) { + pr_debug("level %d\n", level); + prev_node = fetch_pptt_node(table_hdr, cpu->parent); + if (prev_node == NULL) + break; + cpu = prev_node; + level--; + } + return cpu; +} + +static int acpi_parse_pptt(struct acpi_table_header *table_hdr, u32 acpi_cpu_id) +{ + int number_of_levels = 0; + struct acpi_pptt_processor *cpu; + + cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); + if (cpu) + number_of_levels = acpi_process_node(table_hdr, cpu); + + return number_of_levels; +} + +#define ACPI_6_2_CACHE_TYPE_DATA (0x0) +#define ACPI_6_2_CACHE_TYPE_INSTR (1<<2) +#define ACPI_6_2_CACHE_TYPE_UNIFIED (1<<3) +#define ACPI_6_2_CACHE_POLICY_WB (0x0) +#define ACPI_6_2_CACHE_POLICY_WT (1<<4) +#define ACPI_6_2_CACHE_READ_ALLOCATE (0x0) +#define ACPI_6_2_CACHE_WRITE_ALLOCATE (0x01) +#define ACPI_6_2_CACHE_RW_ALLOCATE (0x02) + +static u8 acpi_cache_type(enum cache_type type) +{ + switch (type) { + case CACHE_TYPE_DATA: + pr_debug("Looking for data cache\n"); + return ACPI_6_2_CACHE_TYPE_DATA; + case CACHE_TYPE_INST: + pr_debug("Looking for instruction cache\n"); + return ACPI_6_2_CACHE_TYPE_INSTR; + default: + pr_debug("Unknown cache type, assume unified\n"); + case CACHE_TYPE_UNIFIED: + pr_debug("Looking for unified cache\n"); + return ACPI_6_2_CACHE_TYPE_UNIFIED; + } +} + +/* find the ACPI node describing the cache type/level for the given CPU */ +static struct acpi_pptt_cache *acpi_find_cache_node( + struct acpi_table_header *table_hdr, u32 acpi_cpu_id, + enum cache_type type, unsigned int level, + struct acpi_pptt_processor **node) +{ + int total_levels = 0; + struct acpi_pptt_cache *found = NULL; + struct acpi_pptt_processor *cpu_node; + u8 acpi_type = acpi_cache_type(type); + + pr_debug("Looking for CPU %d's level %d cache type %d\n", + acpi_cpu_id, level, acpi_type); + + cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); + if (!cpu_node) + return NULL; + + do { + found = acpi_find_cache_level(table_hdr, cpu_node, &total_levels, level, acpi_type); + *node = cpu_node; + cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); + } while ((cpu_node) && (!found)); + + return found; +} + +int acpi_find_last_cache_level(unsigned int cpu) +{ + u32 acpi_cpu_id; + struct acpi_table_header *table; + int number_of_levels = 0; + acpi_status status; + + pr_debug("Cache Setup find last level cpu=%d\n", cpu); + + acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); + if (ACPI_FAILURE(status)) { + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); + } else { + number_of_levels = acpi_parse_pptt(table, acpi_cpu_id); + acpi_put_table(table); + } + pr_debug("Cache Setup find last level level=%d\n", number_of_levels); + + return number_of_levels; +} + +/* + * The ACPI spec implies that the fields in the cache structures are used to + * extend and correct the information probed from the hardware. In the case + * of arm64 the CCSIDR probing has been removed because it might be incorrect. + */ +static void update_cache_properties(struct cacheinfo *this_leaf, + struct acpi_pptt_cache *found_cache, + struct acpi_pptt_processor *cpu_node) +{ + if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) + this_leaf->size = found_cache->size; + if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) + this_leaf->coherency_line_size = found_cache->line_size; + if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) + this_leaf->number_of_sets = found_cache->number_of_sets; + if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) + this_leaf->ways_of_associativity = found_cache->associativity; + if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) + switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { + case ACPI_6_2_CACHE_POLICY_WT: + this_leaf->attributes = CACHE_WRITE_THROUGH; + break; + case ACPI_6_2_CACHE_POLICY_WB: + this_leaf->attributes = CACHE_WRITE_BACK; + break; + default: + pr_err("Unknown ACPI cache policy %d\n", + found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY); + } + if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) + switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { + case ACPI_6_2_CACHE_READ_ALLOCATE: + this_leaf->attributes |= CACHE_READ_ALLOCATE; + break; + case ACPI_6_2_CACHE_WRITE_ALLOCATE: + this_leaf->attributes |= CACHE_WRITE_ALLOCATE; + break; + case ACPI_6_2_CACHE_RW_ALLOCATE: + this_leaf->attributes |= + CACHE_READ_ALLOCATE|CACHE_WRITE_ALLOCATE; + break; + default: + pr_err("Unknown ACPI cache allocation policy %d\n", + found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE); + } +} + +static void cache_setup_acpi_cpu(struct acpi_table_header *table, + unsigned int cpu) +{ + struct acpi_pptt_cache *found_cache; + struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; + struct cacheinfo *this_leaf; + unsigned int index = 0; + struct acpi_pptt_processor *cpu_node = NULL; + + while (index < get_cpu_cacheinfo(cpu)->num_leaves) { + this_leaf = this_cpu_ci->info_list + index; + found_cache = acpi_find_cache_node(table, acpi_cpu_id, + this_leaf->type, + this_leaf->level, + &cpu_node); + pr_debug("found = %p %p\n", found_cache, cpu_node); + if (found_cache) + update_cache_properties(this_leaf, + found_cache, + cpu_node); + + index++; + } +} + +static int topology_setup_acpi_cpu(struct acpi_table_header *table, + unsigned int cpu, int level) +{ + struct acpi_pptt_processor *cpu_node; + u32 acpi_cpu_id = acpi_cpu_get_madt_gicc(cpu)->uid; + + cpu_node = acpi_find_processor_node(table, acpi_cpu_id); + if (cpu_node) { + cpu_node = acpi_find_processor_package_id(table, cpu_node, level); + return (int)((u8 *)cpu_node - (u8 *)table); + } + pr_err_once("PPTT table found, but unable to locate core for %d\n", + cpu); + return -ENOENT; +} + +/* + * simply assign a ACPI cache entry to each known CPU cache entry + * determining which entries are shared is done later. + */ +int cache_setup_acpi(unsigned int cpu) +{ + struct acpi_table_header *table; + acpi_status status; + + pr_debug("Cache Setup ACPI cpu %d\n", cpu); + + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); + if (ACPI_FAILURE(status)) { + pr_err_once("No PPTT table found, cache topology may be inaccurate\n"); + return -ENOENT; + } + + cache_setup_acpi_cpu(table, cpu); + acpi_put_table(table); + + return status; +} + +/* + * Determine a topology unique ID for each thread/core/cluster/socket/etc. + * This ID can then be used to group peers. + */ +int setup_acpi_cpu_topology(unsigned int cpu, int level) +{ + struct acpi_table_header *table; + acpi_status status; + int retval; + + status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); + if (ACPI_FAILURE(status)) { + pr_err_once("No PPTT table found, cpu topology may be inaccurate\n"); + return -ENOENT; + } + retval = topology_setup_acpi_cpu(table, cpu, level); + pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n", + cpu, level, retval); + acpi_put_table(table); + + return retval; +}
ACPI 6.2 adds a new table, which describes how processing units are related to each other in tree like fashion. Caches are also sprinkled throughout the tree and describe the properties of the caches in relation to other caches and processing units. Add the code to parse the cache hierarchy and report the total number of levels of cache for a given core using acpi_find_last_cache_level() as well as fill out the individual cores cache information with cache_setup_acpi() once the cpu_cacheinfo structure has been populated by the arch specific code. Further, report peers in the topology using setup_acpi_cpu_topology() to report a unique ID for each processing unit at a given level in the tree. These unique id's can then be used to match related processing units which exist as threads, COD (clusters on die), within a given package, etc. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> --- drivers/acpi/pptt.c | 458 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 458 insertions(+) create mode 100644 drivers/acpi/pptt.c