Message ID | 20230406145850.357296-4-bryan.odonoghue@linaro.org (mailing list archive) |
---|---|
State | New, archived |
Delegated to: | Daniel Lezcano |
Headers | show |
Series | drivers/thermal/qcom/tsens: Add ability to read and shift-in non-contiguous calibration data | expand |
On 06/04/2023 17:58, Bryan O'Donoghue wrote: > In msm8939 some of the sensor calibration data traverses byte boundaries. > Two examples of this are thermal sensor 2 point 1 and sensor 9 point 2. > > For sensor 2 point 1 we can get away with a simple read traversing byte > boundaries as the calibration most significant bits are adjacent to the > least significant across the byte boundary. > > In this case a read starting at the end of the first byte for nine bits > will deliver up the data we want. > > In the case of sensor 9 point 2 however, the most significant bits are not > adjacent and so therefore we need to perform two reads and or the bits > together. > > If reg.p1_shift or reg.p2_shift is set then automatically search for > pX_sY_msb in the dts applying pX_shift as a right shift or into the pX_sY > value. I think that having this in the common code is a bit of an overkill. No other platform has this 'peculiarity' up to now. So, it might be better to add 8939-specific calibration function that calls tsens_read_calibration(), mixes in the s10_p2_msb and then calls compute_intercept_slope(). > > Signed-off-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> > --- > drivers/thermal/qcom/tsens.c | 33 +++++++++++++++++++++++++++++++++ > 1 file changed, 33 insertions(+) > > diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c > index a260f563b4889..eff2c8671c343 100644 > --- a/drivers/thermal/qcom/tsens.c > +++ b/drivers/thermal/qcom/tsens.c > @@ -74,6 +74,7 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, > { > u32 mode; > u32 base1, base2; > + u32 msb; > char name[] = "sXX_pY_backup"; /* s10_p1_backup */ > int i, ret; > > @@ -122,6 +123,22 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, > > dev_dbg(priv->dev, "%s 0x%x\n", name, p1[i]); > > + if (priv->reg && priv->reg[i].p1_shift) { > + ret = snprintf(name, sizeof(name), "s%d_p1_msb", > + priv->sensor[i].hw_id); > + if (ret < 0) > + return ret; > + > + ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &msb); > + if (ret) { > + dev_err(priv->dev, "Failed to read %s\n", name); > + return ret; > + } > + > + dev_dbg(priv->dev, "%s 0x%x\n", name, msb); > + p1[i] |= msb >> priv->reg[i].p1_shift; > + } > + > ret = snprintf(name, sizeof(name), "s%d_p2%s", priv->sensor[i].hw_id, > backup ? "_backup" : ""); > if (ret < 0) > @@ -134,6 +151,22 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, > } > > dev_dbg(priv->dev, "%s 0x%x\n", name, p2[i]); > + > + if (priv->reg && priv->reg[i].p2_shift) { > + ret = snprintf(name, sizeof(name), "s%d_p2_msb", > + priv->sensor[i].hw_id); > + if (ret < 0) > + return ret; > + > + ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &msb); > + if (ret) { > + dev_err(priv->dev, "Failed to read %s\n", name); > + return ret; > + } > + > + dev_dbg(priv->dev, "%s 0x%x\n", name, msb); > + p2[i] |= msb >> priv->reg[i].p2_shift; > + } > } > > switch (mode) {
diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c index a260f563b4889..eff2c8671c343 100644 --- a/drivers/thermal/qcom/tsens.c +++ b/drivers/thermal/qcom/tsens.c @@ -74,6 +74,7 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, { u32 mode; u32 base1, base2; + u32 msb; char name[] = "sXX_pY_backup"; /* s10_p1_backup */ int i, ret; @@ -122,6 +123,22 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, dev_dbg(priv->dev, "%s 0x%x\n", name, p1[i]); + if (priv->reg && priv->reg[i].p1_shift) { + ret = snprintf(name, sizeof(name), "s%d_p1_msb", + priv->sensor[i].hw_id); + if (ret < 0) + return ret; + + ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &msb); + if (ret) { + dev_err(priv->dev, "Failed to read %s\n", name); + return ret; + } + + dev_dbg(priv->dev, "%s 0x%x\n", name, msb); + p1[i] |= msb >> priv->reg[i].p1_shift; + } + ret = snprintf(name, sizeof(name), "s%d_p2%s", priv->sensor[i].hw_id, backup ? "_backup" : ""); if (ret < 0) @@ -134,6 +151,22 @@ int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, } dev_dbg(priv->dev, "%s 0x%x\n", name, p2[i]); + + if (priv->reg && priv->reg[i].p2_shift) { + ret = snprintf(name, sizeof(name), "s%d_p2_msb", + priv->sensor[i].hw_id); + if (ret < 0) + return ret; + + ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &msb); + if (ret) { + dev_err(priv->dev, "Failed to read %s\n", name); + return ret; + } + + dev_dbg(priv->dev, "%s 0x%x\n", name, msb); + p2[i] |= msb >> priv->reg[i].p2_shift; + } } switch (mode) {
In msm8939 some of the sensor calibration data traverses byte boundaries. Two examples of this are thermal sensor 2 point 1 and sensor 9 point 2. For sensor 2 point 1 we can get away with a simple read traversing byte boundaries as the calibration most significant bits are adjacent to the least significant across the byte boundary. In this case a read starting at the end of the first byte for nine bits will deliver up the data we want. In the case of sensor 9 point 2 however, the most significant bits are not adjacent and so therefore we need to perform two reads and or the bits together. If reg.p1_shift or reg.p2_shift is set then automatically search for pX_sY_msb in the dts applying pX_shift as a right shift or into the pX_sY value. Signed-off-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> --- drivers/thermal/qcom/tsens.c | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+)