@@ -759,10 +759,12 @@ static int encrypted_init(struct encrypted_key_payload *epayload,
__ekey_init(epayload, format, master_desc, datalen);
if (!hex_encoded_iv) {
- get_random_bytes(epayload->iv, ivsize);
+ ret = get_random_bytes_wait(epayload->iv, ivsize);
+ if (unlikely(ret))
+ return ret;
- get_random_bytes(epayload->decrypted_data,
- epayload->decrypted_datalen);
+ ret = get_random_bytes_wait(epayload->decrypted_data,
+ epayload->decrypted_datalen);
} else
ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
return ret;
@@ -139,12 +139,10 @@ static inline void key_alloc_serial(struct key *key)
struct rb_node *parent, **p;
struct key *xkey;
- /* propose a random serial number and look for a hole for it in the
- * serial number tree */
+ /* propose a non-negative random serial number and look for a hole for
+ * it in the serial number tree */
do {
- get_random_bytes(&key->serial, sizeof(key->serial));
-
- key->serial >>= 1; /* negative numbers are not permitted */
+ key->serial = get_random_u32() >> 1;
} while (key->serial < 3);
spin_lock(&key_serial_lock);
Otherwise, we might use bad random numbers which, particularly in the case of IV generation, could be quite bad. It makes sense to use the synchronous API here, because we're always in process context (as the code is littered with GFP_KERNEL and the like). However, we can't change to using a blocking function in key serial allocation, because this will block booting in some configurations, so here we use the more appropriate get_random_u32, which will use RDRAND if available. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: David Howells <dhowells@redhat.com> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: David Safford <safford@us.ibm.com> --- security/keys/encrypted-keys/encrypted.c | 8 +++++--- security/keys/key.c | 8 +++----- 2 files changed, 8 insertions(+), 8 deletions(-)