Message ID | 20190606164845.179427-4-glider@google.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | [v6,1/3] mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options | expand |
On Thu, Jun 06, 2019 at 06:48:45PM +0200, Alexander Potapenko wrote: > Add tests for heap and pagealloc initialization. > These can be used to check init_on_alloc and init_on_free implementations > as well as other approaches to initialization. > > Expected test output in the case the kernel provides heap initialization > (e.g. when running with either init_on_alloc=1 or init_on_free=1): > > test_meminit: all 10 tests in test_pages passed > test_meminit: all 40 tests in test_kvmalloc passed > test_meminit: all 60 tests in test_kmemcache passed > test_meminit: all 10 tests in test_rcu_persistent passed > test_meminit: all 120 tests passed! > > Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> -Kees > To: Kees Cook <keescook@chromium.org> > To: Andrew Morton <akpm@linux-foundation.org> > To: Christoph Lameter <cl@linux.com> > Cc: Nick Desaulniers <ndesaulniers@google.com> > Cc: Kostya Serebryany <kcc@google.com> > Cc: Dmitry Vyukov <dvyukov@google.com> > Cc: Sandeep Patil <sspatil@android.com> > Cc: Laura Abbott <labbott@redhat.com> > Cc: Jann Horn <jannh@google.com> > Cc: Marco Elver <elver@google.com> > Cc: linux-mm@kvack.org > Cc: linux-security-module@vger.kernel.org > Cc: kernel-hardening@lists.openwall.com > --- > v3: > - added example test output to the description > - fixed a missing include spotted by kbuild test robot <lkp@intel.com> > - added a missing MODULE_LICENSE > - call do_kmem_cache_size() with size >= sizeof(void*) to unbreak > debug builds > v5: > - added tests for RCU slabs and __GFP_ZERO > --- > lib/Kconfig.debug | 8 + > lib/Makefile | 1 + > lib/test_meminit.c | 362 +++++++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 371 insertions(+) > create mode 100644 lib/test_meminit.c > > diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug > index cbdfae379896..085711f14abf 100644 > --- a/lib/Kconfig.debug > +++ b/lib/Kconfig.debug > @@ -2040,6 +2040,14 @@ config TEST_STACKINIT > > If unsure, say N. > > +config TEST_MEMINIT > + tristate "Test heap/page initialization" > + help > + Test if the kernel is zero-initializing heap and page allocations. > + This can be useful to test init_on_alloc and init_on_free features. > + > + If unsure, say N. > + > endif # RUNTIME_TESTING_MENU > > config MEMTEST > diff --git a/lib/Makefile b/lib/Makefile > index fb7697031a79..05980c802500 100644 > --- a/lib/Makefile > +++ b/lib/Makefile > @@ -91,6 +91,7 @@ obj-$(CONFIG_TEST_DEBUG_VIRTUAL) += test_debug_virtual.o > obj-$(CONFIG_TEST_MEMCAT_P) += test_memcat_p.o > obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o > obj-$(CONFIG_TEST_STACKINIT) += test_stackinit.o > +obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o > > obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/ > > diff --git a/lib/test_meminit.c b/lib/test_meminit.c > new file mode 100644 > index 000000000000..ed7efec1387b > --- /dev/null > +++ b/lib/test_meminit.c > @@ -0,0 +1,362 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Test cases for SL[AOU]B/page initialization at alloc/free time. > + */ > +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt > + > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/mm.h> > +#include <linux/module.h> > +#include <linux/slab.h> > +#include <linux/string.h> > +#include <linux/vmalloc.h> > + > +#define GARBAGE_INT (0x09A7BA9E) > +#define GARBAGE_BYTE (0x9E) > + > +#define REPORT_FAILURES_IN_FN() \ > + do { \ > + if (failures) \ > + pr_info("%s failed %d out of %d times\n", \ > + __func__, failures, num_tests); \ > + else \ > + pr_info("all %d tests in %s passed\n", \ > + num_tests, __func__); \ > + } while (0) > + > +/* Calculate the number of uninitialized bytes in the buffer. */ > +static int __init count_nonzero_bytes(void *ptr, size_t size) > +{ > + int i, ret = 0; > + unsigned char *p = (unsigned char *)ptr; > + > + for (i = 0; i < size; i++) > + if (p[i]) > + ret++; > + return ret; > +} > + > +/* Fill a buffer with garbage, skipping |skip| first bytes. */ > +static void __init fill_with_garbage_skip(void *ptr, size_t size, size_t skip) > +{ > + unsigned int *p = (unsigned int *)ptr; > + int i = 0; > + > + if (skip) { > + WARN_ON(skip > size); > + p += skip; > + } > + while (size >= sizeof(*p)) { > + p[i] = GARBAGE_INT; > + i++; > + size -= sizeof(*p); > + } > + if (size) > + memset(&p[i], GARBAGE_BYTE, size); > +} > + > +static void __init fill_with_garbage(void *ptr, size_t size) > +{ > + fill_with_garbage_skip(ptr, size, 0); > +} > + > +static int __init do_alloc_pages_order(int order, int *total_failures) > +{ > + struct page *page; > + void *buf; > + size_t size = PAGE_SIZE << order; > + > + page = alloc_pages(GFP_KERNEL, order); > + buf = page_address(page); > + fill_with_garbage(buf, size); > + __free_pages(page, order); > + > + page = alloc_pages(GFP_KERNEL, order); > + buf = page_address(page); > + if (count_nonzero_bytes(buf, size)) > + (*total_failures)++; > + fill_with_garbage(buf, size); > + __free_pages(page, order); > + return 1; > +} > + > +/* Test the page allocator by calling alloc_pages with different orders. */ > +static int __init test_pages(int *total_failures) > +{ > + int failures = 0, num_tests = 0; > + int i; > + > + for (i = 0; i < 10; i++) > + num_tests += do_alloc_pages_order(i, &failures); > + > + REPORT_FAILURES_IN_FN(); > + *total_failures += failures; > + return num_tests; > +} > + > +/* Test kmalloc() with given parameters. */ > +static int __init do_kmalloc_size(size_t size, int *total_failures) > +{ > + void *buf; > + > + buf = kmalloc(size, GFP_KERNEL); > + fill_with_garbage(buf, size); > + kfree(buf); > + > + buf = kmalloc(size, GFP_KERNEL); > + if (count_nonzero_bytes(buf, size)) > + (*total_failures)++; > + fill_with_garbage(buf, size); > + kfree(buf); > + return 1; > +} > + > +/* Test vmalloc() with given parameters. */ > +static int __init do_vmalloc_size(size_t size, int *total_failures) > +{ > + void *buf; > + > + buf = vmalloc(size); > + fill_with_garbage(buf, size); > + vfree(buf); > + > + buf = vmalloc(size); > + if (count_nonzero_bytes(buf, size)) > + (*total_failures)++; > + fill_with_garbage(buf, size); > + vfree(buf); > + return 1; > +} > + > +/* Test kmalloc()/vmalloc() by allocating objects of different sizes. */ > +static int __init test_kvmalloc(int *total_failures) > +{ > + int failures = 0, num_tests = 0; > + int i, size; > + > + for (i = 0; i < 20; i++) { > + size = 1 << i; > + num_tests += do_kmalloc_size(size, &failures); > + num_tests += do_vmalloc_size(size, &failures); > + } > + > + REPORT_FAILURES_IN_FN(); > + *total_failures += failures; > + return num_tests; > +} > + > +#define CTOR_BYTES (sizeof(unsigned int)) > +#define CTOR_PATTERN (0x41414141) > +/* Initialize the first 4 bytes of the object. */ > +static void test_ctor(void *obj) > +{ > + *(unsigned int *)obj = CTOR_PATTERN; > +} > + > +/* > + * Check the invariants for the buffer allocated from a slab cache. > + * If the cache has a test constructor, the first 4 bytes of the object must > + * always remain equal to CTOR_PATTERN. > + * If the cache isn't an RCU-typesafe one, or if the allocation is done with > + * __GFP_ZERO, then the object contents must be zeroed after allocation. > + * If the cache is an RCU-typesafe one, the object contents must never be > + * zeroed after the first use. This is checked by memcmp() in > + * do_kmem_cache_size(). > + */ > +static bool __init check_buf(void *buf, int size, bool want_ctor, > + bool want_rcu, bool want_zero) > +{ > + int bytes; > + bool fail = false; > + > + bytes = count_nonzero_bytes(buf, size); > + WARN_ON(want_ctor && want_zero); > + if (want_zero) > + return bytes; > + if (want_ctor) { > + if (*(unsigned int *)buf != CTOR_PATTERN) > + fail = 1; > + } else { > + if (bytes) > + fail = !want_rcu; > + } > + return fail; > +} > + > +/* > + * Test kmem_cache with given parameters: > + * want_ctor - use a constructor; > + * want_rcu - use SLAB_TYPESAFE_BY_RCU; > + * want_zero - use __GFP_ZERO. > + */ > +static int __init do_kmem_cache_size(size_t size, bool want_ctor, > + bool want_rcu, bool want_zero, > + int *total_failures) > +{ > + struct kmem_cache *c; > + int iter; > + bool fail = false; > + gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0); > + void *buf, *buf_copy; > + > + c = kmem_cache_create("test_cache", size, 1, > + want_rcu ? SLAB_TYPESAFE_BY_RCU : 0, > + want_ctor ? test_ctor : NULL); > + for (iter = 0; iter < 10; iter++) { > + buf = kmem_cache_alloc(c, alloc_mask); > + /* Check that buf is zeroed, if it must be. */ > + fail = check_buf(buf, size, want_ctor, want_rcu, want_zero); > + fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0); > + /* > + * If this is an RCU cache, use a critical section to ensure we > + * can touch objects after they're freed. > + */ > + if (want_rcu) { > + rcu_read_lock(); > + /* > + * Copy the buffer to check that it's not wiped on > + * free(). > + */ > + buf_copy = kmalloc(size, GFP_KERNEL); > + if (buf_copy) > + memcpy(buf_copy, buf, size); > + } > + kmem_cache_free(c, buf); > + if (want_rcu) { > + /* > + * Check that |buf| is intact after kmem_cache_free(). > + * |want_zero| is false, because we wrote garbage to > + * the buffer already. > + */ > + fail |= check_buf(buf, size, want_ctor, want_rcu, > + false); > + if (buf_copy) { > + fail |= (bool)memcmp(buf, buf_copy, size); > + kfree(buf_copy); > + } > + rcu_read_unlock(); > + } > + } > + kmem_cache_destroy(c); > + > + *total_failures += fail; > + return 1; > +} > + > +/* > + * Check that the data written to an RCU-allocated object survives > + * reallocation. > + */ > +static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures) > +{ > + struct kmem_cache *c; > + void *buf, *buf_contents, *saved_ptr; > + void **used_objects; > + int i, iter, maxiter = 1024; > + bool fail = false; > + > + c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU, > + NULL); > + buf = kmem_cache_alloc(c, GFP_KERNEL); > + saved_ptr = buf; > + fill_with_garbage(buf, size); > + buf_contents = kmalloc(size, GFP_KERNEL); > + if (!buf_contents) > + goto out; > + used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL); > + if (!used_objects) { > + kfree(buf_contents); > + goto out; > + } > + memcpy(buf_contents, buf, size); > + kmem_cache_free(c, buf); > + /* > + * Run for a fixed number of iterations. If we never hit saved_ptr, > + * assume the test passes. > + */ > + for (iter = 0; iter < maxiter; iter++) { > + buf = kmem_cache_alloc(c, GFP_KERNEL); > + used_objects[iter] = buf; > + if (buf == saved_ptr) { > + fail = memcmp(buf_contents, buf, size); > + for (i = 0; i <= iter; i++) > + kmem_cache_free(c, used_objects[i]); > + goto free_out; > + } > + } > + > +free_out: > + kmem_cache_destroy(c); > + kfree(buf_contents); > + kfree(used_objects); > +out: > + *total_failures += fail; > + return 1; > +} > + > +/* > + * Test kmem_cache allocation by creating caches of different sizes, with and > + * without constructors, with and without SLAB_TYPESAFE_BY_RCU. > + */ > +static int __init test_kmemcache(int *total_failures) > +{ > + int failures = 0, num_tests = 0; > + int i, flags, size; > + bool ctor, rcu, zero; > + > + for (i = 0; i < 10; i++) { > + size = 8 << i; > + for (flags = 0; flags < 8; flags++) { > + ctor = flags & 1; > + rcu = flags & 2; > + zero = flags & 4; > + if (ctor & zero) > + continue; > + num_tests += do_kmem_cache_size(size, ctor, rcu, zero, > + &failures); > + } > + } > + REPORT_FAILURES_IN_FN(); > + *total_failures += failures; > + return num_tests; > +} > + > +/* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */ > +static int __init test_rcu_persistent(int *total_failures) > +{ > + int failures = 0, num_tests = 0; > + int i, size; > + > + for (i = 0; i < 10; i++) { > + size = 8 << i; > + num_tests += do_kmem_cache_rcu_persistent(size, &failures); > + } > + REPORT_FAILURES_IN_FN(); > + *total_failures += failures; > + return num_tests; > +} > + > +/* > + * Run the tests. Each test function returns the number of executed tests and > + * updates |failures| with the number of failed tests. > + */ > +static int __init test_meminit_init(void) > +{ > + int failures = 0, num_tests = 0; > + > + num_tests += test_pages(&failures); > + num_tests += test_kvmalloc(&failures); > + num_tests += test_kmemcache(&failures); > + num_tests += test_rcu_persistent(&failures); > + > + if (failures == 0) > + pr_info("all %d tests passed!\n", num_tests); > + else > + pr_info("failures: %d out of %d\n", failures, num_tests); > + > + return failures ? -EINVAL : 0; > +} > +module_init(test_meminit_init); > + > +MODULE_LICENSE("GPL"); > -- > 2.22.0.rc1.311.g5d7573a151-goog >
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index cbdfae379896..085711f14abf 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -2040,6 +2040,14 @@ config TEST_STACKINIT If unsure, say N. +config TEST_MEMINIT + tristate "Test heap/page initialization" + help + Test if the kernel is zero-initializing heap and page allocations. + This can be useful to test init_on_alloc and init_on_free features. + + If unsure, say N. + endif # RUNTIME_TESTING_MENU config MEMTEST diff --git a/lib/Makefile b/lib/Makefile index fb7697031a79..05980c802500 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -91,6 +91,7 @@ obj-$(CONFIG_TEST_DEBUG_VIRTUAL) += test_debug_virtual.o obj-$(CONFIG_TEST_MEMCAT_P) += test_memcat_p.o obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o obj-$(CONFIG_TEST_STACKINIT) += test_stackinit.o +obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/ diff --git a/lib/test_meminit.c b/lib/test_meminit.c new file mode 100644 index 000000000000..ed7efec1387b --- /dev/null +++ b/lib/test_meminit.c @@ -0,0 +1,362 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test cases for SL[AOU]B/page initialization at alloc/free time. + */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/vmalloc.h> + +#define GARBAGE_INT (0x09A7BA9E) +#define GARBAGE_BYTE (0x9E) + +#define REPORT_FAILURES_IN_FN() \ + do { \ + if (failures) \ + pr_info("%s failed %d out of %d times\n", \ + __func__, failures, num_tests); \ + else \ + pr_info("all %d tests in %s passed\n", \ + num_tests, __func__); \ + } while (0) + +/* Calculate the number of uninitialized bytes in the buffer. */ +static int __init count_nonzero_bytes(void *ptr, size_t size) +{ + int i, ret = 0; + unsigned char *p = (unsigned char *)ptr; + + for (i = 0; i < size; i++) + if (p[i]) + ret++; + return ret; +} + +/* Fill a buffer with garbage, skipping |skip| first bytes. */ +static void __init fill_with_garbage_skip(void *ptr, size_t size, size_t skip) +{ + unsigned int *p = (unsigned int *)ptr; + int i = 0; + + if (skip) { + WARN_ON(skip > size); + p += skip; + } + while (size >= sizeof(*p)) { + p[i] = GARBAGE_INT; + i++; + size -= sizeof(*p); + } + if (size) + memset(&p[i], GARBAGE_BYTE, size); +} + +static void __init fill_with_garbage(void *ptr, size_t size) +{ + fill_with_garbage_skip(ptr, size, 0); +} + +static int __init do_alloc_pages_order(int order, int *total_failures) +{ + struct page *page; + void *buf; + size_t size = PAGE_SIZE << order; + + page = alloc_pages(GFP_KERNEL, order); + buf = page_address(page); + fill_with_garbage(buf, size); + __free_pages(page, order); + + page = alloc_pages(GFP_KERNEL, order); + buf = page_address(page); + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + __free_pages(page, order); + return 1; +} + +/* Test the page allocator by calling alloc_pages with different orders. */ +static int __init test_pages(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i; + + for (i = 0; i < 10; i++) + num_tests += do_alloc_pages_order(i, &failures); + + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* Test kmalloc() with given parameters. */ +static int __init do_kmalloc_size(size_t size, int *total_failures) +{ + void *buf; + + buf = kmalloc(size, GFP_KERNEL); + fill_with_garbage(buf, size); + kfree(buf); + + buf = kmalloc(size, GFP_KERNEL); + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + kfree(buf); + return 1; +} + +/* Test vmalloc() with given parameters. */ +static int __init do_vmalloc_size(size_t size, int *total_failures) +{ + void *buf; + + buf = vmalloc(size); + fill_with_garbage(buf, size); + vfree(buf); + + buf = vmalloc(size); + if (count_nonzero_bytes(buf, size)) + (*total_failures)++; + fill_with_garbage(buf, size); + vfree(buf); + return 1; +} + +/* Test kmalloc()/vmalloc() by allocating objects of different sizes. */ +static int __init test_kvmalloc(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, size; + + for (i = 0; i < 20; i++) { + size = 1 << i; + num_tests += do_kmalloc_size(size, &failures); + num_tests += do_vmalloc_size(size, &failures); + } + + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +#define CTOR_BYTES (sizeof(unsigned int)) +#define CTOR_PATTERN (0x41414141) +/* Initialize the first 4 bytes of the object. */ +static void test_ctor(void *obj) +{ + *(unsigned int *)obj = CTOR_PATTERN; +} + +/* + * Check the invariants for the buffer allocated from a slab cache. + * If the cache has a test constructor, the first 4 bytes of the object must + * always remain equal to CTOR_PATTERN. + * If the cache isn't an RCU-typesafe one, or if the allocation is done with + * __GFP_ZERO, then the object contents must be zeroed after allocation. + * If the cache is an RCU-typesafe one, the object contents must never be + * zeroed after the first use. This is checked by memcmp() in + * do_kmem_cache_size(). + */ +static bool __init check_buf(void *buf, int size, bool want_ctor, + bool want_rcu, bool want_zero) +{ + int bytes; + bool fail = false; + + bytes = count_nonzero_bytes(buf, size); + WARN_ON(want_ctor && want_zero); + if (want_zero) + return bytes; + if (want_ctor) { + if (*(unsigned int *)buf != CTOR_PATTERN) + fail = 1; + } else { + if (bytes) + fail = !want_rcu; + } + return fail; +} + +/* + * Test kmem_cache with given parameters: + * want_ctor - use a constructor; + * want_rcu - use SLAB_TYPESAFE_BY_RCU; + * want_zero - use __GFP_ZERO. + */ +static int __init do_kmem_cache_size(size_t size, bool want_ctor, + bool want_rcu, bool want_zero, + int *total_failures) +{ + struct kmem_cache *c; + int iter; + bool fail = false; + gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0); + void *buf, *buf_copy; + + c = kmem_cache_create("test_cache", size, 1, + want_rcu ? SLAB_TYPESAFE_BY_RCU : 0, + want_ctor ? test_ctor : NULL); + for (iter = 0; iter < 10; iter++) { + buf = kmem_cache_alloc(c, alloc_mask); + /* Check that buf is zeroed, if it must be. */ + fail = check_buf(buf, size, want_ctor, want_rcu, want_zero); + fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0); + /* + * If this is an RCU cache, use a critical section to ensure we + * can touch objects after they're freed. + */ + if (want_rcu) { + rcu_read_lock(); + /* + * Copy the buffer to check that it's not wiped on + * free(). + */ + buf_copy = kmalloc(size, GFP_KERNEL); + if (buf_copy) + memcpy(buf_copy, buf, size); + } + kmem_cache_free(c, buf); + if (want_rcu) { + /* + * Check that |buf| is intact after kmem_cache_free(). + * |want_zero| is false, because we wrote garbage to + * the buffer already. + */ + fail |= check_buf(buf, size, want_ctor, want_rcu, + false); + if (buf_copy) { + fail |= (bool)memcmp(buf, buf_copy, size); + kfree(buf_copy); + } + rcu_read_unlock(); + } + } + kmem_cache_destroy(c); + + *total_failures += fail; + return 1; +} + +/* + * Check that the data written to an RCU-allocated object survives + * reallocation. + */ +static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures) +{ + struct kmem_cache *c; + void *buf, *buf_contents, *saved_ptr; + void **used_objects; + int i, iter, maxiter = 1024; + bool fail = false; + + c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU, + NULL); + buf = kmem_cache_alloc(c, GFP_KERNEL); + saved_ptr = buf; + fill_with_garbage(buf, size); + buf_contents = kmalloc(size, GFP_KERNEL); + if (!buf_contents) + goto out; + used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL); + if (!used_objects) { + kfree(buf_contents); + goto out; + } + memcpy(buf_contents, buf, size); + kmem_cache_free(c, buf); + /* + * Run for a fixed number of iterations. If we never hit saved_ptr, + * assume the test passes. + */ + for (iter = 0; iter < maxiter; iter++) { + buf = kmem_cache_alloc(c, GFP_KERNEL); + used_objects[iter] = buf; + if (buf == saved_ptr) { + fail = memcmp(buf_contents, buf, size); + for (i = 0; i <= iter; i++) + kmem_cache_free(c, used_objects[i]); + goto free_out; + } + } + +free_out: + kmem_cache_destroy(c); + kfree(buf_contents); + kfree(used_objects); +out: + *total_failures += fail; + return 1; +} + +/* + * Test kmem_cache allocation by creating caches of different sizes, with and + * without constructors, with and without SLAB_TYPESAFE_BY_RCU. + */ +static int __init test_kmemcache(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, flags, size; + bool ctor, rcu, zero; + + for (i = 0; i < 10; i++) { + size = 8 << i; + for (flags = 0; flags < 8; flags++) { + ctor = flags & 1; + rcu = flags & 2; + zero = flags & 4; + if (ctor & zero) + continue; + num_tests += do_kmem_cache_size(size, ctor, rcu, zero, + &failures); + } + } + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */ +static int __init test_rcu_persistent(int *total_failures) +{ + int failures = 0, num_tests = 0; + int i, size; + + for (i = 0; i < 10; i++) { + size = 8 << i; + num_tests += do_kmem_cache_rcu_persistent(size, &failures); + } + REPORT_FAILURES_IN_FN(); + *total_failures += failures; + return num_tests; +} + +/* + * Run the tests. Each test function returns the number of executed tests and + * updates |failures| with the number of failed tests. + */ +static int __init test_meminit_init(void) +{ + int failures = 0, num_tests = 0; + + num_tests += test_pages(&failures); + num_tests += test_kvmalloc(&failures); + num_tests += test_kmemcache(&failures); + num_tests += test_rcu_persistent(&failures); + + if (failures == 0) + pr_info("all %d tests passed!\n", num_tests); + else + pr_info("failures: %d out of %d\n", failures, num_tests); + + return failures ? -EINVAL : 0; +} +module_init(test_meminit_init); + +MODULE_LICENSE("GPL");
Add tests for heap and pagealloc initialization. These can be used to check init_on_alloc and init_on_free implementations as well as other approaches to initialization. Expected test output in the case the kernel provides heap initialization (e.g. when running with either init_on_alloc=1 or init_on_free=1): test_meminit: all 10 tests in test_pages passed test_meminit: all 40 tests in test_kvmalloc passed test_meminit: all 60 tests in test_kmemcache passed test_meminit: all 10 tests in test_rcu_persistent passed test_meminit: all 120 tests passed! Signed-off-by: Alexander Potapenko <glider@google.com> To: Kees Cook <keescook@chromium.org> To: Andrew Morton <akpm@linux-foundation.org> To: Christoph Lameter <cl@linux.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Marco Elver <elver@google.com> Cc: linux-mm@kvack.org Cc: linux-security-module@vger.kernel.org Cc: kernel-hardening@lists.openwall.com --- v3: - added example test output to the description - fixed a missing include spotted by kbuild test robot <lkp@intel.com> - added a missing MODULE_LICENSE - call do_kmem_cache_size() with size >= sizeof(void*) to unbreak debug builds v5: - added tests for RCU slabs and __GFP_ZERO --- lib/Kconfig.debug | 8 + lib/Makefile | 1 + lib/test_meminit.c | 362 +++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 371 insertions(+) create mode 100644 lib/test_meminit.c