@@ -964,16 +964,32 @@ __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
poll_wait(filp, &rbwork->full_waiters, poll_table);
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
- rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
- } else {
- poll_wait(filp, &rbwork->waiters, poll_table);
- rbwork->waiters_pending = true;
+ if (full_hit(buffer, cpu, full))
+ return EPOLLIN | EPOLLRDNORM;
+ /*
+ * Only allow full_waiters_pending update to be seen after
+ * the shortest_full is set. If the writer sees the
+ * full_waiters_pending flag set, it will compare the
+ * amount in the ring buffer to shortest_full. If the amount
+ * in the ring buffer is greater than the shortest_full
+ * percent, it will call the irq_work handler to wake up
+ * this list. The irq_handler will reset shortest_full
+ * back to zero. That's done under the reader_lock, but
+ * the below smp_mb() makes sure that the update to
+ * full_waiters_pending doesn't leak up into the above.
+ */
+ smp_mb();
+ rbwork->full_waiters_pending = true;
+ return 0;
}
+ poll_wait(filp, &rbwork->waiters, poll_table);
+ rbwork->waiters_pending = true;
+
/*
* There's a tight race between setting the waiters_pending and
* checking if the ring buffer is empty. Once the waiters_pending bit
@@ -989,9 +1005,6 @@ __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
*/
smp_mb();
- if (full)
- return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
-
if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
(cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
return EPOLLIN | EPOLLRDNORM;