Message ID | 20220128234517.3503701-8-song@kernel.org (mailing list archive) |
---|---|
State | Superseded |
Delegated to: | BPF |
Headers | show |
Series | bpf_prog_pack allocator | expand |
Context | Check | Description |
---|---|---|
bpf/vmtest-bpf-next-PR | fail | merge-conflict |
netdev/tree_selection | success | Clearly marked for bpf-next |
netdev/apply | fail | Patch does not apply to bpf-next |
On 1/29/22 12:45 AM, Song Liu wrote: > Most BPF programs are small, but they consume a page each. For systems > with busy traffic and many BPF programs, this could add significant > pressure to instruction TLB. > > Introduce bpf_prog_pack allocator to pack multiple BPF programs in a huge > page. The memory is then allocated in 64 byte chunks. > > Memory allocated by bpf_prog_pack allocator is RO protected after initial > allocation. To write to it, the user (jit engine) need to use text poke > API. Did you benchmark the program load times under this API, e.g. how much overhead is expected for very large programs? > Signed-off-by: Song Liu <song@kernel.org> > --- > kernel/bpf/core.c | 127 ++++++++++++++++++++++++++++++++++++++++++++++ > 1 file changed, 127 insertions(+) > > diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c > index dc0142e20c72..25e34caa9a95 100644 > --- a/kernel/bpf/core.c > +++ b/kernel/bpf/core.c > @@ -805,6 +805,133 @@ int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, > return slot; > } > > +/* > + * BPF program pack allocator. > + * > + * Most BPF programs are pretty small. Allocating a hole page for each > + * program is sometime a waste. Many small bpf program also adds pressure > + * to instruction TLB. To solve this issue, we introduce a BPF program pack > + * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) > + * to host BPF programs. > + */ > +#define BPF_PROG_PACK_SIZE HPAGE_PMD_SIZE > +#define BPF_PROG_CHUNK_SHIFT 6 > +#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) > +#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) > +#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) > + > +struct bpf_prog_pack { > + struct list_head list; > + void *ptr; > + unsigned long bitmap[BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)]; > +}; > + > +#define BPF_PROG_MAX_PACK_PROG_SIZE HPAGE_PMD_SIZE > +#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) > + > +static DEFINE_MUTEX(pack_mutex); > +static LIST_HEAD(pack_list); > + > +static struct bpf_prog_pack *alloc_new_pack(void) > +{ > + struct bpf_prog_pack *pack; > + > + pack = kzalloc(sizeof(*pack), GFP_KERNEL); > + if (!pack) > + return NULL; > + pack->ptr = module_alloc(BPF_PROG_PACK_SIZE); > + if (!pack->ptr) { > + kfree(pack); > + return NULL; > + } > + bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); > + list_add_tail(&pack->list, &pack_list); > + > + set_vm_flush_reset_perms(pack->ptr); > + set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); > + set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); > + return pack; > +} > + > +static void *bpf_prog_pack_alloc(u32 size) > +{ > + unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); > + struct bpf_prog_pack *pack; > + unsigned long pos; > + void *ptr = NULL; > + > + if (size > BPF_PROG_MAX_PACK_PROG_SIZE) { > + size = round_up(size, PAGE_SIZE); > + ptr = module_alloc(size); > + if (ptr) { > + set_vm_flush_reset_perms(ptr); > + set_memory_ro((unsigned long)ptr, size / PAGE_SIZE); > + set_memory_x((unsigned long)ptr, size / PAGE_SIZE); > + } > + return ptr; > + } > + mutex_lock(&pack_mutex); > + list_for_each_entry(pack, &pack_list, list) { > + pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, > + nbits, 0); > + if (pos < BPF_PROG_CHUNK_COUNT) > + goto found_free_area; > + } > + > + pack = alloc_new_pack(); > + if (!pack) > + goto out; Will this effectively disable the JIT for all bpf_prog_pack_alloc requests <= BPF_PROG_MAX_PACK_PROG_SIZE when vmap_allow_huge is false (e.g. boot param via nohugevmalloc) ? > + pos = 0; > + > +found_free_area: > + bitmap_set(pack->bitmap, pos, nbits); > + ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); > + > +out: > + mutex_unlock(&pack_mutex); > + return ptr; > +} > + > +static void bpf_prog_pack_free(struct bpf_binary_header *hdr) > +{ > + struct bpf_prog_pack *pack = NULL, *tmp; > + unsigned int nbits; > + unsigned long pos; > + void *pack_ptr; > + > + if (hdr->size > BPF_PROG_MAX_PACK_PROG_SIZE) { > + module_memfree(hdr); > + return; > + } > + > + pack_ptr = (void *)((unsigned long)hdr & ~(BPF_PROG_PACK_SIZE - 1)); > + mutex_lock(&pack_mutex); > + > + list_for_each_entry(tmp, &pack_list, list) { > + if (tmp->ptr == pack_ptr) { > + pack = tmp; > + break; > + } > + } > + > + if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) > + goto out; > + > + nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size); > + pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT; > + > + bitmap_clear(pack->bitmap, pos, nbits); > + if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, > + BPF_PROG_CHUNK_COUNT, 0) == 0) { > + list_del(&pack->list); > + module_memfree(pack->ptr); > + kfree(pack); > + } > +out: > + mutex_unlock(&pack_mutex); > +} > + > static atomic_long_t bpf_jit_current; > > /* Can be overridden by an arch's JIT compiler if it has a custom, >
On Mon, Jan 31, 2022 at 4:06 PM Daniel Borkmann <daniel@iogearbox.net> wrote: > > On 1/29/22 12:45 AM, Song Liu wrote: > > Most BPF programs are small, but they consume a page each. For systems > > with busy traffic and many BPF programs, this could add significant > > pressure to instruction TLB. > > > > Introduce bpf_prog_pack allocator to pack multiple BPF programs in a huge > > page. The memory is then allocated in 64 byte chunks. > > > > Memory allocated by bpf_prog_pack allocator is RO protected after initial > > allocation. To write to it, the user (jit engine) need to use text poke > > API. > > Did you benchmark the program load times under this API, e.g. how much > overhead is expected for very large programs? For the two scale tests in test_verifier: ./test_verifier 965 966 #965/p scale: scale test 1 OK #966/p scale: scale test 2 OK The runtime is about 0.6 second before the set and 0.7 second after. Is this a good benchmark? > > > Signed-off-by: Song Liu <song@kernel.org> > > --- > > kernel/bpf/core.c | 127 ++++++++++++++++++++++++++++++++++++++++++++++ > > 1 file changed, 127 insertions(+) > > [...] > > + } > > + mutex_lock(&pack_mutex); > > + list_for_each_entry(pack, &pack_list, list) { > > + pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, > > + nbits, 0); > > + if (pos < BPF_PROG_CHUNK_COUNT) > > + goto found_free_area; > > + } > > + > > + pack = alloc_new_pack(); > > + if (!pack) > > + goto out; > > Will this effectively disable the JIT for all bpf_prog_pack_alloc requests <= > BPF_PROG_MAX_PACK_PROG_SIZE when vmap_allow_huge is false (e.g. boot param via > nohugevmalloc) ? This won't disable JIT. It will just allocate 512x 4k pages for a 2MB pack. We will mark the whole 2MB RO, same as a 2MB huge page. We still benefit from this as this avoids poking the linear mapping (1GB pages) to 4kB pages with set_memory_ro(). Thanks, Song
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index dc0142e20c72..25e34caa9a95 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -805,6 +805,133 @@ int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, return slot; } +/* + * BPF program pack allocator. + * + * Most BPF programs are pretty small. Allocating a hole page for each + * program is sometime a waste. Many small bpf program also adds pressure + * to instruction TLB. To solve this issue, we introduce a BPF program pack + * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) + * to host BPF programs. + */ +#define BPF_PROG_PACK_SIZE HPAGE_PMD_SIZE +#define BPF_PROG_CHUNK_SHIFT 6 +#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) +#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) +#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) + +struct bpf_prog_pack { + struct list_head list; + void *ptr; + unsigned long bitmap[BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)]; +}; + +#define BPF_PROG_MAX_PACK_PROG_SIZE HPAGE_PMD_SIZE +#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) + +static DEFINE_MUTEX(pack_mutex); +static LIST_HEAD(pack_list); + +static struct bpf_prog_pack *alloc_new_pack(void) +{ + struct bpf_prog_pack *pack; + + pack = kzalloc(sizeof(*pack), GFP_KERNEL); + if (!pack) + return NULL; + pack->ptr = module_alloc(BPF_PROG_PACK_SIZE); + if (!pack->ptr) { + kfree(pack); + return NULL; + } + bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); + list_add_tail(&pack->list, &pack_list); + + set_vm_flush_reset_perms(pack->ptr); + set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); + set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); + return pack; +} + +static void *bpf_prog_pack_alloc(u32 size) +{ + unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); + struct bpf_prog_pack *pack; + unsigned long pos; + void *ptr = NULL; + + if (size > BPF_PROG_MAX_PACK_PROG_SIZE) { + size = round_up(size, PAGE_SIZE); + ptr = module_alloc(size); + if (ptr) { + set_vm_flush_reset_perms(ptr); + set_memory_ro((unsigned long)ptr, size / PAGE_SIZE); + set_memory_x((unsigned long)ptr, size / PAGE_SIZE); + } + return ptr; + } + mutex_lock(&pack_mutex); + list_for_each_entry(pack, &pack_list, list) { + pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, + nbits, 0); + if (pos < BPF_PROG_CHUNK_COUNT) + goto found_free_area; + } + + pack = alloc_new_pack(); + if (!pack) + goto out; + + pos = 0; + +found_free_area: + bitmap_set(pack->bitmap, pos, nbits); + ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); + +out: + mutex_unlock(&pack_mutex); + return ptr; +} + +static void bpf_prog_pack_free(struct bpf_binary_header *hdr) +{ + struct bpf_prog_pack *pack = NULL, *tmp; + unsigned int nbits; + unsigned long pos; + void *pack_ptr; + + if (hdr->size > BPF_PROG_MAX_PACK_PROG_SIZE) { + module_memfree(hdr); + return; + } + + pack_ptr = (void *)((unsigned long)hdr & ~(BPF_PROG_PACK_SIZE - 1)); + mutex_lock(&pack_mutex); + + list_for_each_entry(tmp, &pack_list, list) { + if (tmp->ptr == pack_ptr) { + pack = tmp; + break; + } + } + + if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) + goto out; + + nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size); + pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT; + + bitmap_clear(pack->bitmap, pos, nbits); + if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, + BPF_PROG_CHUNK_COUNT, 0) == 0) { + list_del(&pack->list); + module_memfree(pack->ptr); + kfree(pack); + } +out: + mutex_unlock(&pack_mutex); +} + static atomic_long_t bpf_jit_current; /* Can be overridden by an arch's JIT compiler if it has a custom,
Most BPF programs are small, but they consume a page each. For systems with busy traffic and many BPF programs, this could add significant pressure to instruction TLB. Introduce bpf_prog_pack allocator to pack multiple BPF programs in a huge page. The memory is then allocated in 64 byte chunks. Memory allocated by bpf_prog_pack allocator is RO protected after initial allocation. To write to it, the user (jit engine) need to use text poke API. Signed-off-by: Song Liu <song@kernel.org> --- kernel/bpf/core.c | 127 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 127 insertions(+)