@@ -19635,6 +19635,19 @@ F: include/linux/wait.h
F: include/uapi/linux/sched.h
F: kernel/sched/
+SCHEDULER - SCHED_EXT
+R: Tejun Heo <tj@kernel.org>
+R: David Vernet <void@manifault.com>
+L: linux-kernel@vger.kernel.org
+S: Maintained
+W: https://github.com/sched-ext/scx
+T: git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git
+F: include/linux/sched/ext.h
+F: kernel/sched/ext.h
+F: kernel/sched/ext.c
+F: tools/sched_ext/
+F: tools/testing/selftests/sched_ext
+
SCSI LIBSAS SUBSYSTEM
R: John Garry <john.g.garry@oracle.com>
R: Jason Yan <yanaijie@huawei.com>
@@ -131,6 +131,7 @@
*(__dl_sched_class) \
*(__rt_sched_class) \
*(__fair_sched_class) \
+ *(__ext_sched_class) \
*(__idle_sched_class) \
__sched_class_lowest = .;
@@ -80,6 +80,8 @@ struct task_group;
struct task_struct;
struct user_event_mm;
+#include <linux/sched/ext.h>
+
/*
* Task state bitmask. NOTE! These bits are also
* encoded in fs/proc/array.c: get_task_state().
@@ -798,6 +800,9 @@ struct task_struct {
struct sched_rt_entity rt;
struct sched_dl_entity dl;
struct sched_dl_entity *dl_server;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ struct sched_ext_entity scx;
+#endif
const struct sched_class *sched_class;
#ifdef CONFIG_SCHED_CORE
@@ -1,9 +1,148 @@
/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ */
#ifndef _LINUX_SCHED_EXT_H
#define _LINUX_SCHED_EXT_H
#ifdef CONFIG_SCHED_CLASS_EXT
-#error "NOT IMPLEMENTED YET"
+
+#include <linux/rhashtable.h>
+#include <linux/llist.h>
+
+enum scx_public_consts {
+ SCX_OPS_NAME_LEN = 128,
+
+ SCX_SLICE_DFL = 20 * NSEC_PER_MSEC,
+};
+
+/*
+ * DSQ (dispatch queue) IDs are 64bit of the format:
+ *
+ * Bits: [63] [62 .. 0]
+ * [ B] [ ID ]
+ *
+ * B: 1 for IDs for built-in DSQs, 0 for ops-created user DSQs
+ * ID: 63 bit ID
+ *
+ * Built-in IDs:
+ *
+ * Bits: [63] [62] [61..32] [31 .. 0]
+ * [ 1] [ L] [ R ] [ V ]
+ *
+ * 1: 1 for built-in DSQs.
+ * L: 1 for LOCAL_ON DSQ IDs, 0 for others
+ * V: For LOCAL_ON DSQ IDs, a CPU number. For others, a pre-defined value.
+ */
+enum scx_dsq_id_flags {
+ SCX_DSQ_FLAG_BUILTIN = 1LLU << 63,
+ SCX_DSQ_FLAG_LOCAL_ON = 1LLU << 62,
+
+ SCX_DSQ_INVALID = SCX_DSQ_FLAG_BUILTIN | 0,
+ SCX_DSQ_GLOBAL = SCX_DSQ_FLAG_BUILTIN | 1,
+ SCX_DSQ_LOCAL = SCX_DSQ_FLAG_BUILTIN | 2,
+ SCX_DSQ_LOCAL_ON = SCX_DSQ_FLAG_BUILTIN | SCX_DSQ_FLAG_LOCAL_ON,
+ SCX_DSQ_LOCAL_CPU_MASK = 0xffffffffLLU,
+};
+
+/*
+ * Dispatch queue (dsq) is a simple FIFO which is used to buffer between the
+ * scheduler core and the BPF scheduler. See the documentation for more details.
+ */
+struct scx_dispatch_q {
+ raw_spinlock_t lock;
+ struct list_head list; /* tasks in dispatch order */
+ u32 nr;
+ u64 id;
+ struct rhash_head hash_node;
+ struct llist_node free_node;
+ struct rcu_head rcu;
+};
+
+/* scx_entity.flags */
+enum scx_ent_flags {
+ SCX_TASK_QUEUED = 1 << 0, /* on ext runqueue */
+ SCX_TASK_BAL_KEEP = 1 << 1, /* balance decided to keep current */
+ SCX_TASK_RESET_RUNNABLE_AT = 1 << 2, /* runnable_at should be reset */
+ SCX_TASK_DEQD_FOR_SLEEP = 1 << 3, /* last dequeue was for SLEEP */
+
+ SCX_TASK_STATE_SHIFT = 8, /* bit 8 and 9 are used to carry scx_task_state */
+ SCX_TASK_STATE_BITS = 2,
+ SCX_TASK_STATE_MASK = ((1 << SCX_TASK_STATE_BITS) - 1) << SCX_TASK_STATE_SHIFT,
+
+ SCX_TASK_CURSOR = 1 << 31, /* iteration cursor, not a task */
+};
+
+/* scx_entity.flags & SCX_TASK_STATE_MASK */
+enum scx_task_state {
+ SCX_TASK_NONE, /* ops.init_task() not called yet */
+ SCX_TASK_INIT, /* ops.init_task() succeeded, but task can be cancelled */
+ SCX_TASK_READY, /* fully initialized, but not in sched_ext */
+ SCX_TASK_ENABLED, /* fully initialized and in sched_ext */
+
+ SCX_TASK_NR_STATES,
+};
+
+/*
+ * Mask bits for scx_entity.kf_mask. Not all kfuncs can be called from
+ * everywhere and the following bits track which kfunc sets are currently
+ * allowed for %current. This simple per-task tracking works because SCX ops
+ * nest in a limited way. BPF will likely implement a way to allow and disallow
+ * kfuncs depending on the calling context which will replace this manual
+ * mechanism. See scx_kf_allow().
+ */
+enum scx_kf_mask {
+ SCX_KF_UNLOCKED = 0, /* not sleepable, not rq locked */
+ /* all non-sleepables may be nested inside SLEEPABLE */
+ SCX_KF_SLEEPABLE = 1 << 0, /* sleepable init operations */
+ /* ops.dequeue (in REST) may be nested inside DISPATCH */
+ SCX_KF_DISPATCH = 1 << 2, /* ops.dispatch() */
+ SCX_KF_ENQUEUE = 1 << 3, /* ops.enqueue() and ops.select_cpu() */
+ SCX_KF_SELECT_CPU = 1 << 4, /* ops.select_cpu() */
+ SCX_KF_REST = 1 << 5, /* other rq-locked operations */
+
+ __SCX_KF_RQ_LOCKED = SCX_KF_DISPATCH |
+ SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU | SCX_KF_REST,
+};
+
+/*
+ * The following is embedded in task_struct and contains all fields necessary
+ * for a task to be scheduled by SCX.
+ */
+struct sched_ext_entity {
+ struct scx_dispatch_q *dsq;
+ struct list_head dsq_node;
+ u32 flags; /* protected by rq lock */
+ u32 weight;
+ s32 sticky_cpu;
+ s32 holding_cpu;
+ u32 kf_mask; /* see scx_kf_mask above */
+ atomic_long_t ops_state;
+
+ struct list_head runnable_node; /* rq->scx.runnable_list */
+
+ u64 ddsp_dsq_id;
+ u64 ddsp_enq_flags;
+
+ /* BPF scheduler modifiable fields */
+
+ /*
+ * Runtime budget in nsecs. This is usually set through
+ * scx_bpf_dispatch() but can also be modified directly by the BPF
+ * scheduler. Automatically decreased by SCX as the task executes. On
+ * depletion, a scheduling event is triggered.
+ */
+ u64 slice;
+
+ /* cold fields */
+ /* must be the last field, see init_scx_entity() */
+ struct list_head tasks_node;
+};
+
+void sched_ext_free(struct task_struct *p);
+
#else /* !CONFIG_SCHED_CLASS_EXT */
static inline void sched_ext_free(struct task_struct *p) {}
@@ -118,6 +118,7 @@ struct clone_args {
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE 5
#define SCHED_DEADLINE 6
+#define SCHED_EXT 7
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
#define SCHED_RESET_ON_FORK 0x40000000
@@ -6,6 +6,7 @@
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/sched/task.h>
+#include <linux/sched/ext.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
@@ -97,6 +98,16 @@ struct task_struct init_task __aligned(L1_CACHE_BYTES) = {
#endif
#ifdef CONFIG_CGROUP_SCHED
.sched_task_group = &root_task_group,
+#endif
+#ifdef CONFIG_SCHED_CLASS_EXT
+ .scx = {
+ .dsq_node = LIST_HEAD_INIT(init_task.scx.dsq_node),
+ .sticky_cpu = -1,
+ .holding_cpu = -1,
+ .runnable_node = LIST_HEAD_INIT(init_task.scx.runnable_node),
+ .ddsp_dsq_id = SCX_DSQ_INVALID,
+ .slice = SCX_SLICE_DFL,
+ },
#endif
.ptraced = LIST_HEAD_INIT(init_task.ptraced),
.ptrace_entry = LIST_HEAD_INIT(init_task.ptrace_entry),
@@ -133,4 +133,24 @@ config SCHED_CORE
which is the likely usage by Linux distributions, there should
be no measurable impact on performance.
-
+config SCHED_CLASS_EXT
+ bool "Extensible Scheduling Class"
+ depends on BPF_SYSCALL && BPF_JIT && !SCHED_CORE
+ help
+ This option enables a new scheduler class sched_ext (SCX), which
+ allows scheduling policies to be implemented as BPF programs to
+ achieve the following:
+
+ - Ease of experimentation and exploration: Enabling rapid
+ iteration of new scheduling policies.
+ - Customization: Building application-specific schedulers which
+ implement policies that are not applicable to general-purpose
+ schedulers.
+ - Rapid scheduler deployments: Non-disruptive swap outs of
+ scheduling policies in production environments.
+
+ sched_ext leverages BPF’s struct_ops feature to define a structure
+ which exports function callbacks and flags to BPF programs that
+ wish to implement scheduling policies. The struct_ops structure
+ exported by sched_ext is struct sched_ext_ops, and is conceptually
+ similar to struct sched_class.
@@ -21,13 +21,17 @@
#include <linux/cpuidle.h>
#include <linux/jiffies.h>
+#include <linux/kobject.h>
#include <linux/livepatch.h>
+#include <linux/pm.h>
#include <linux/psi.h>
+#include <linux/seq_buf.h>
#include <linux/seqlock_api.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include <linux/tsacct_kern.h>
#include <linux/vtime.h>
+#include <linux/percpu-rwsem.h>
#include <uapi/linux/sched/types.h>
@@ -52,3 +56,6 @@
#include "cputime.c"
#include "deadline.c"
+#ifdef CONFIG_SCHED_CLASS_EXT
+# include "ext.c"
+#endif
@@ -1259,7 +1259,7 @@ bool sched_can_stop_tick(struct rq *rq)
* if there's more than one we need the tick for involuntary
* preemption.
*/
- if (rq->nr_running > 1)
+ if (!scx_switched_all() && rq->nr_running > 1)
return false;
/*
@@ -3997,6 +3997,15 @@ bool cpus_share_resources(int this_cpu, int that_cpu)
static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
{
+ /*
+ * The BPF scheduler may depend on select_task_rq() being invoked during
+ * wakeups. In addition, @p may end up executing on a different CPU
+ * regardless of what happens in the wakeup path making the ttwu_queue
+ * optimization less meaningful. Skip if on SCX.
+ */
+ if (task_on_scx(p))
+ return false;
+
/*
* Do not complicate things with the async wake_list while the CPU is
* in hotplug state.
@@ -4564,6 +4573,10 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->rt.on_rq = 0;
p->rt.on_list = 0;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ init_scx_entity(&p->scx);
+#endif
+
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
@@ -4812,6 +4825,10 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
goto out_cancel;
} else if (rt_prio(p->prio)) {
p->sched_class = &rt_sched_class;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ } else if (task_should_scx(p)) {
+ p->sched_class = &ext_sched_class;
+#endif
} else {
p->sched_class = &fair_sched_class;
}
@@ -5728,8 +5745,10 @@ void scheduler_tick(void)
wq_worker_tick(curr);
#ifdef CONFIG_SMP
- rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
+ if (!scx_switched_all()) {
+ rq->idle_balance = idle_cpu(cpu);
+ trigger_load_balance(rq);
+ }
#endif
}
@@ -7119,6 +7138,10 @@ void __setscheduler_prio(struct task_struct *p, int prio)
p->sched_class = &dl_sched_class;
else if (rt_prio(prio))
p->sched_class = &rt_sched_class;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ else if (task_should_scx(p))
+ p->sched_class = &ext_sched_class;
+#endif
else
p->sched_class = &fair_sched_class;
@@ -9120,6 +9143,7 @@ SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
+ case SCHED_EXT:
ret = 0;
break;
}
@@ -9147,6 +9171,7 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
+ case SCHED_EXT:
ret = 0;
}
return ret;
@@ -9983,6 +10008,10 @@ void __init sched_init(void)
BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
+#ifdef CONFIG_SCHED_CLASS_EXT
+ BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
+ BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
+#endif
wait_bit_init();
@@ -12112,3 +12141,38 @@ void sched_mm_cid_fork(struct task_struct *t)
t->mm_cid_active = 1;
}
#endif
+
+#ifdef CONFIG_SCHED_CLASS_EXT
+void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
+ struct sched_enq_and_set_ctx *ctx)
+{
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_rq_held(rq);
+
+ *ctx = (struct sched_enq_and_set_ctx){
+ .p = p,
+ .queue_flags = queue_flags,
+ .queued = task_on_rq_queued(p),
+ .running = task_current(rq, p),
+ };
+
+ update_rq_clock(rq);
+ if (ctx->queued)
+ dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
+ if (ctx->running)
+ put_prev_task(rq, p);
+}
+
+void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
+{
+ struct rq *rq = task_rq(ctx->p);
+
+ lockdep_assert_rq_held(rq);
+
+ if (ctx->queued)
+ enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
+ if (ctx->running)
+ set_next_task(rq, ctx->p);
+}
+#endif /* CONFIG_SCHED_CLASS_EXT */
@@ -1089,6 +1089,9 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
P(dl.runtime);
P(dl.deadline);
}
+#ifdef CONFIG_SCHED_CLASS_EXT
+ __PS("ext.enabled", task_on_scx(p));
+#endif
#undef PN_SCHEDSTAT
#undef P_SCHEDSTAT
new file mode 100644
@@ -0,0 +1,4238 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ */
+#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void)))
+
+enum scx_consts {
+ SCX_DSP_DFL_MAX_BATCH = 32,
+
+ SCX_EXIT_BT_LEN = 64,
+ SCX_EXIT_MSG_LEN = 1024,
+};
+
+enum scx_exit_kind {
+ SCX_EXIT_NONE,
+ SCX_EXIT_DONE,
+
+ SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */
+ SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */
+ SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */
+
+ SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */
+ SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */
+};
+
+/*
+ * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is
+ * being disabled.
+ */
+struct scx_exit_info {
+ /* %SCX_EXIT_* - broad category of the exit reason */
+ enum scx_exit_kind kind;
+
+ /* exit code if gracefully exiting */
+ s64 exit_code;
+
+ /* textual representation of the above */
+ const char *reason;
+
+ /* backtrace if exiting due to an error */
+ unsigned long *bt;
+ u32 bt_len;
+
+ /* informational message */
+ char *msg;
+};
+
+/* sched_ext_ops.flags */
+enum scx_ops_flags {
+ /*
+ * Keep built-in idle tracking even if ops.update_idle() is implemented.
+ */
+ SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0,
+
+ /*
+ * By default, if there are no other task to run on the CPU, ext core
+ * keeps running the current task even after its slice expires. If this
+ * flag is specified, such tasks are passed to ops.enqueue() with
+ * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info.
+ */
+ SCX_OPS_ENQ_LAST = 1LLU << 1,
+
+ /*
+ * An exiting task may schedule after PF_EXITING is set. In such cases,
+ * bpf_task_from_pid() may not be able to find the task and if the BPF
+ * scheduler depends on pid lookup for dispatching, the task will be
+ * lost leading to various issues including RCU grace period stalls.
+ *
+ * To mask this problem, by default, unhashed tasks are automatically
+ * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't
+ * depend on pid lookups and wants to handle these tasks directly, the
+ * following flag can be used.
+ */
+ SCX_OPS_ENQ_EXITING = 1LLU << 2,
+
+ /*
+ * If set, only tasks with policy set to SCHED_EXT are attached to
+ * sched_ext. If clear, SCHED_NORMAL tasks are also included.
+ */
+ SCX_OPS_SWITCH_PARTIAL = 1LLU << 3,
+
+ SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE |
+ SCX_OPS_ENQ_LAST |
+ SCX_OPS_ENQ_EXITING |
+ SCX_OPS_SWITCH_PARTIAL,
+};
+
+/* argument container for ops.init_task() */
+struct scx_init_task_args {
+ /*
+ * Set if ops.init_task() is being invoked on the fork path, as opposed
+ * to the scheduler transition path.
+ */
+ bool fork;
+};
+
+/* argument container for ops.exit_task() */
+struct scx_exit_task_args {
+ /* Whether the task exited before running on sched_ext. */
+ bool cancelled;
+};
+
+/**
+ * struct sched_ext_ops - Operation table for BPF scheduler implementation
+ *
+ * Userland can implement an arbitrary scheduling policy by implementing and
+ * loading operations in this table.
+ */
+struct sched_ext_ops {
+ /**
+ * select_cpu - Pick the target CPU for a task which is being woken up
+ * @p: task being woken up
+ * @prev_cpu: the cpu @p was on before sleeping
+ * @wake_flags: SCX_WAKE_*
+ *
+ * Decision made here isn't final. @p may be moved to any CPU while it
+ * is getting dispatched for execution later. However, as @p is not on
+ * the rq at this point, getting the eventual execution CPU right here
+ * saves a small bit of overhead down the line.
+ *
+ * If an idle CPU is returned, the CPU is kicked and will try to
+ * dispatch. While an explicit custom mechanism can be added,
+ * select_cpu() serves as the default way to wake up idle CPUs.
+ *
+ * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p
+ * is dispatched, the ops.enqueue() callback will be skipped. Finally,
+ * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the
+ * local DSQ of whatever CPU is returned by this callback.
+ */
+ s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags);
+
+ /**
+ * enqueue - Enqueue a task on the BPF scheduler
+ * @p: task being enqueued
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch()
+ * or enqueue on the BPF scheduler. If not directly dispatched, the bpf
+ * scheduler owns @p and if it fails to dispatch @p, the task will
+ * stall.
+ *
+ * If @p was dispatched from ops.select_cpu(), this callback is
+ * skipped.
+ */
+ void (*enqueue)(struct task_struct *p, u64 enq_flags);
+
+ /**
+ * dequeue - Remove a task from the BPF scheduler
+ * @p: task being dequeued
+ * @deq_flags: %SCX_DEQ_*
+ *
+ * Remove @p from the BPF scheduler. This is usually called to isolate
+ * the task while updating its scheduling properties (e.g. priority).
+ *
+ * The ext core keeps track of whether the BPF side owns a given task or
+ * not and can gracefully ignore spurious dispatches from BPF side,
+ * which makes it safe to not implement this method. However, depending
+ * on the scheduling logic, this can lead to confusing behaviors - e.g.
+ * scheduling position not being updated across a priority change.
+ */
+ void (*dequeue)(struct task_struct *p, u64 deq_flags);
+
+ /**
+ * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs
+ * @cpu: CPU to dispatch tasks for
+ * @prev: previous task being switched out
+ *
+ * Called when a CPU's local dsq is empty. The operation should dispatch
+ * one or more tasks from the BPF scheduler into the DSQs using
+ * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using
+ * scx_bpf_consume().
+ *
+ * The maximum number of times scx_bpf_dispatch() can be called without
+ * an intervening scx_bpf_consume() is specified by
+ * ops.dispatch_max_batch. See the comments on top of the two functions
+ * for more details.
+ *
+ * When not %NULL, @prev is an SCX task with its slice depleted. If
+ * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in
+ * @prev->scx.flags, it is not enqueued yet and will be enqueued after
+ * ops.dispatch() returns. To keep executing @prev, return without
+ * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST.
+ */
+ void (*dispatch)(s32 cpu, struct task_struct *prev);
+
+ /**
+ * tick - Periodic tick
+ * @p: task running currently
+ *
+ * This operation is called every 1/HZ seconds on CPUs which are
+ * executing an SCX task. Setting @p->scx.slice to 0 will trigger an
+ * immediate dispatch cycle on the CPU.
+ */
+ void (*tick)(struct task_struct *p);
+
+ /**
+ * yield - Yield CPU
+ * @from: yielding task
+ * @to: optional yield target task
+ *
+ * If @to is NULL, @from is yielding the CPU to other runnable tasks.
+ * The BPF scheduler should ensure that other available tasks are
+ * dispatched before the yielding task. Return value is ignored in this
+ * case.
+ *
+ * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf
+ * scheduler can implement the request, return %true; otherwise, %false.
+ */
+ bool (*yield)(struct task_struct *from, struct task_struct *to);
+
+ /**
+ * set_weight - Set task weight
+ * @p: task to set weight for
+ * @weight: new eight [1..10000]
+ *
+ * Update @p's weight to @weight.
+ */
+ void (*set_weight)(struct task_struct *p, u32 weight);
+
+ /**
+ * set_cpumask - Set CPU affinity
+ * @p: task to set CPU affinity for
+ * @cpumask: cpumask of cpus that @p can run on
+ *
+ * Update @p's CPU affinity to @cpumask.
+ */
+ void (*set_cpumask)(struct task_struct *p,
+ const struct cpumask *cpumask);
+
+ /**
+ * update_idle - Update the idle state of a CPU
+ * @cpu: CPU to udpate the idle state for
+ * @idle: whether entering or exiting the idle state
+ *
+ * This operation is called when @rq's CPU goes or leaves the idle
+ * state. By default, implementing this operation disables the built-in
+ * idle CPU tracking and the following helpers become unavailable:
+ *
+ * - scx_bpf_select_cpu_dfl()
+ * - scx_bpf_test_and_clear_cpu_idle()
+ * - scx_bpf_pick_idle_cpu()
+ *
+ * The user also must implement ops.select_cpu() as the default
+ * implementation relies on scx_bpf_select_cpu_dfl().
+ *
+ * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle
+ * tracking.
+ */
+ void (*update_idle)(s32 cpu, bool idle);
+
+ /**
+ * init_task - Initialize a task to run in a BPF scheduler
+ * @p: task to initialize for BPF scheduling
+ * @args: init arguments, see the struct definition
+ *
+ * Either we're loading a BPF scheduler or a new task is being forked.
+ * Initialize @p for BPF scheduling. This operation may block and can
+ * be used for allocations, and is called exactly once for a task.
+ *
+ * Return 0 for success, -errno for failure. An error return while
+ * loading will abort loading of the BPF scheduler. During a fork, it
+ * will abort that specific fork.
+ */
+ s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args);
+
+ /**
+ * exit_task - Exit a previously-running task from the system
+ * @p: task to exit
+ *
+ * @p is exiting or the BPF scheduler is being unloaded. Perform any
+ * necessary cleanup for @p.
+ */
+ void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args);
+
+ /**
+ * enable - Enable BPF scheduling for a task
+ * @p: task to enable BPF scheduling for
+ *
+ * Enable @p for BPF scheduling. enable() is called on @p any time it
+ * enters SCX, and is always paired with a matching disable().
+ */
+ void (*enable)(struct task_struct *p);
+
+ /**
+ * disable - Disable BPF scheduling for a task
+ * @p: task to disable BPF scheduling for
+ *
+ * @p is exiting, leaving SCX or the BPF scheduler is being unloaded.
+ * Disable BPF scheduling for @p. A disable() call is always matched
+ * with a prior enable() call.
+ */
+ void (*disable)(struct task_struct *p);
+
+ /*
+ * All online ops must come before ops.init().
+ */
+
+ /**
+ * init - Initialize the BPF scheduler
+ */
+ s32 (*init)(void);
+
+ /**
+ * exit - Clean up after the BPF scheduler
+ * @info: Exit info
+ */
+ void (*exit)(struct scx_exit_info *info);
+
+ /**
+ * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch
+ */
+ u32 dispatch_max_batch;
+
+ /**
+ * flags - %SCX_OPS_* flags
+ */
+ u64 flags;
+
+ /**
+ * name - BPF scheduler's name
+ *
+ * Must be a non-zero valid BPF object name including only isalnum(),
+ * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the
+ * BPF scheduler is enabled.
+ */
+ char name[SCX_OPS_NAME_LEN];
+};
+
+enum scx_opi {
+ SCX_OPI_BEGIN = 0,
+ SCX_OPI_NORMAL_BEGIN = 0,
+ SCX_OPI_NORMAL_END = SCX_OP_IDX(init),
+ SCX_OPI_END = SCX_OP_IDX(init),
+};
+
+enum scx_wake_flags {
+ /* expose select WF_* flags as enums */
+ SCX_WAKE_FORK = WF_FORK,
+ SCX_WAKE_TTWU = WF_TTWU,
+ SCX_WAKE_SYNC = WF_SYNC,
+};
+
+enum scx_enq_flags {
+ /* expose select ENQUEUE_* flags as enums */
+ SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP,
+ SCX_ENQ_HEAD = ENQUEUE_HEAD,
+
+ /* high 32bits are SCX specific */
+
+ /*
+ * The task being enqueued is the only task available for the cpu. By
+ * default, ext core keeps executing such tasks but when
+ * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the
+ * %SCX_ENQ_LAST flag set.
+ *
+ * If the BPF scheduler wants to continue executing the task,
+ * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately.
+ * If the task gets queued on a different dsq or the BPF side, the BPF
+ * scheduler is responsible for triggering a follow-up scheduling event.
+ * Otherwise, Execution may stall.
+ */
+ SCX_ENQ_LAST = 1LLU << 41,
+
+ /* high 8 bits are internal */
+ __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56,
+
+ SCX_ENQ_CLEAR_OPSS = 1LLU << 56,
+};
+
+enum scx_deq_flags {
+ /* expose select DEQUEUE_* flags as enums */
+ SCX_DEQ_SLEEP = DEQUEUE_SLEEP,
+};
+
+enum scx_pick_idle_cpu_flags {
+ SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */
+};
+
+enum scx_ops_enable_state {
+ SCX_OPS_PREPPING,
+ SCX_OPS_ENABLING,
+ SCX_OPS_ENABLED,
+ SCX_OPS_DISABLING,
+ SCX_OPS_DISABLED,
+};
+
+static const char *scx_ops_enable_state_str[] = {
+ [SCX_OPS_PREPPING] = "prepping",
+ [SCX_OPS_ENABLING] = "enabling",
+ [SCX_OPS_ENABLED] = "enabled",
+ [SCX_OPS_DISABLING] = "disabling",
+ [SCX_OPS_DISABLED] = "disabled",
+};
+
+/*
+ * sched_ext_entity->ops_state
+ *
+ * Used to track the task ownership between the SCX core and the BPF scheduler.
+ * State transitions look as follows:
+ *
+ * NONE -> QUEUEING -> QUEUED -> DISPATCHING
+ * ^ | |
+ * | v v
+ * \-------------------------------/
+ *
+ * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call
+ * sites for explanations on the conditions being waited upon and why they are
+ * safe. Transitions out of them into NONE or QUEUED must store_release and the
+ * waiters should load_acquire.
+ *
+ * Tracking scx_ops_state enables sched_ext core to reliably determine whether
+ * any given task can be dispatched by the BPF scheduler at all times and thus
+ * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler
+ * to try to dispatch any task anytime regardless of its state as the SCX core
+ * can safely reject invalid dispatches.
+ */
+enum scx_ops_state {
+ SCX_OPSS_NONE, /* owned by the SCX core */
+ SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */
+ SCX_OPSS_QUEUED, /* owned by the BPF scheduler */
+ SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */
+
+ /*
+ * QSEQ brands each QUEUED instance so that, when dispatch races
+ * dequeue/requeue, the dispatcher can tell whether it still has a claim
+ * on the task being dispatched.
+ *
+ * As some 32bit archs can't do 64bit store_release/load_acquire,
+ * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on
+ * 32bit machines. The dispatch race window QSEQ protects is very narrow
+ * and runs with IRQ disabled. 30 bits should be sufficient.
+ */
+ SCX_OPSS_QSEQ_SHIFT = 2,
+};
+
+/* Use macros to ensure that the type is unsigned long for the masks */
+#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1)
+#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK)
+
+/*
+ * During exit, a task may schedule after losing its PIDs. When disabling the
+ * BPF scheduler, we need to be able to iterate tasks in every state to
+ * guarantee system safety. Maintain a dedicated task list which contains every
+ * task between its fork and eventual free.
+ */
+static DEFINE_SPINLOCK(scx_tasks_lock);
+static LIST_HEAD(scx_tasks);
+
+/* ops enable/disable */
+static struct kthread_worker *scx_ops_helper;
+static DEFINE_MUTEX(scx_ops_enable_mutex);
+DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
+DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
+static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
+static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
+static bool scx_switching_all;
+DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
+
+static struct sched_ext_ops scx_ops;
+static bool scx_warned_zero_slice;
+
+static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last);
+static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting);
+static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
+
+struct static_key_false scx_has_op[SCX_OPI_END] =
+ { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT };
+
+static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE);
+static struct scx_exit_info *scx_exit_info;
+
+/* idle tracking */
+#ifdef CONFIG_SMP
+#ifdef CONFIG_CPUMASK_OFFSTACK
+#define CL_ALIGNED_IF_ONSTACK
+#else
+#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp
+#endif
+
+static struct {
+ cpumask_var_t cpu;
+ cpumask_var_t smt;
+} idle_masks CL_ALIGNED_IF_ONSTACK;
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Direct dispatch marker.
+ *
+ * Non-NULL values are used for direct dispatch from enqueue path. A valid
+ * pointer points to the task currently being enqueued. An ERR_PTR value is used
+ * to indicate that direct dispatch has already happened.
+ */
+static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
+
+/* dispatch queues */
+static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global;
+
+static const struct rhashtable_params dsq_hash_params = {
+ .key_len = 8,
+ .key_offset = offsetof(struct scx_dispatch_q, id),
+ .head_offset = offsetof(struct scx_dispatch_q, hash_node),
+};
+
+static struct rhashtable dsq_hash;
+static LLIST_HEAD(dsqs_to_free);
+
+/* dispatch buf */
+struct scx_dsp_buf_ent {
+ struct task_struct *task;
+ unsigned long qseq;
+ u64 dsq_id;
+ u64 enq_flags;
+};
+
+static u32 scx_dsp_max_batch;
+static struct scx_dsp_buf_ent __percpu *scx_dsp_buf;
+
+struct scx_dsp_ctx {
+ struct rq *rq;
+ struct rq_flags *rf;
+ u32 buf_cursor;
+ u32 nr_tasks;
+};
+
+static DEFINE_PER_CPU(struct scx_dsp_ctx, scx_dsp_ctx);
+
+/* /sys/kernel/sched_ext interface */
+static struct kset *scx_kset;
+static struct kobject *scx_root_kobj;
+
+static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
+ s64 exit_code,
+ const char *fmt, ...);
+
+#define scx_ops_error_kind(err, fmt, args...) \
+ scx_ops_exit_kind((err), 0, fmt, ##args)
+
+#define scx_ops_exit(code, fmt, args...) \
+ scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args)
+
+#define scx_ops_error(fmt, args...) \
+ scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args)
+
+#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)])
+
+/* if the highest set bit is N, return a mask with bits [N+1, 31] set */
+static u32 higher_bits(u32 flags)
+{
+ return ~((1 << fls(flags)) - 1);
+}
+
+/* return the mask with only the highest bit set */
+static u32 highest_bit(u32 flags)
+{
+ int bit = fls(flags);
+ return bit ? 1 << (bit - 1) : 0;
+}
+
+/*
+ * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
+ * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
+ * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
+ * whether it's running from an allowed context.
+ *
+ * @mask is constant, always inline to cull the mask calculations.
+ */
+static __always_inline void scx_kf_allow(u32 mask)
+{
+ /* nesting is allowed only in increasing scx_kf_mask order */
+ WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
+ "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
+ current->scx.kf_mask, mask);
+ current->scx.kf_mask |= mask;
+ barrier();
+}
+
+static void scx_kf_disallow(u32 mask)
+{
+ barrier();
+ current->scx.kf_mask &= ~mask;
+}
+
+#define SCX_CALL_OP(mask, op, args...) \
+do { \
+ if (mask) { \
+ scx_kf_allow(mask); \
+ scx_ops.op(args); \
+ scx_kf_disallow(mask); \
+ } else { \
+ scx_ops.op(args); \
+ } \
+} while (0)
+
+#define SCX_CALL_OP_RET(mask, op, args...) \
+({ \
+ __typeof__(scx_ops.op(args)) __ret; \
+ if (mask) { \
+ scx_kf_allow(mask); \
+ __ret = scx_ops.op(args); \
+ scx_kf_disallow(mask); \
+ } else { \
+ __ret = scx_ops.op(args); \
+ } \
+ __ret; \
+})
+
+/* @mask is constant, always inline to cull unnecessary branches */
+static __always_inline bool scx_kf_allowed(u32 mask)
+{
+ if (unlikely(!(current->scx.kf_mask & mask))) {
+ scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x",
+ mask, current->scx.kf_mask);
+ return false;
+ }
+
+ if (unlikely((mask & SCX_KF_SLEEPABLE) && in_interrupt())) {
+ scx_ops_error("sleepable kfunc called from non-sleepable context");
+ return false;
+ }
+
+ /*
+ * Enforce nesting boundaries. e.g. A kfunc which can be called from
+ * DISPATCH must not be called if we're running DEQUEUE which is nested
+ * inside ops.dispatch(). We don't need to check the SCX_KF_SLEEPABLE
+ * boundary thanks to the above in_interrupt() check.
+ */
+ if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
+ (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
+ scx_ops_error("dispatch kfunc called from a nested operation");
+ return false;
+ }
+
+ return true;
+}
+
+
+/*
+ * SCX task iterator.
+ */
+struct scx_task_iter {
+ struct sched_ext_entity cursor;
+ struct task_struct *locked;
+ struct rq *rq;
+ struct rq_flags rf;
+};
+
+/**
+ * scx_task_iter_init - Initialize a task iterator
+ * @iter: iterator to init
+ *
+ * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized,
+ * @iter must eventually be exited with scx_task_iter_exit().
+ *
+ * scx_tasks_lock may be released between this and the first next() call or
+ * between any two next() calls. If scx_tasks_lock is released between two
+ * next() calls, the caller is responsible for ensuring that the task being
+ * iterated remains accessible either through RCU read lock or obtaining a
+ * reference count.
+ *
+ * All tasks which existed when the iteration started are guaranteed to be
+ * visited as long as they still exist.
+ */
+static void scx_task_iter_init(struct scx_task_iter *iter)
+{
+ lockdep_assert_held(&scx_tasks_lock);
+
+ iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
+ list_add(&iter->cursor.tasks_node, &scx_tasks);
+ iter->locked = NULL;
+}
+
+/**
+ * scx_task_iter_exit - Exit a task iterator
+ * @iter: iterator to exit
+ *
+ * Exit a previously initialized @iter. Must be called with scx_tasks_lock held.
+ * If the iterator holds a task's rq lock, that rq lock is released. See
+ * scx_task_iter_init() for details.
+ */
+static void scx_task_iter_exit(struct scx_task_iter *iter)
+{
+ struct list_head *cursor = &iter->cursor.tasks_node;
+
+ lockdep_assert_held(&scx_tasks_lock);
+
+ if (iter->locked) {
+ task_rq_unlock(iter->rq, iter->locked, &iter->rf);
+ iter->locked = NULL;
+ }
+
+ if (list_empty(cursor))
+ return;
+
+ list_del_init(cursor);
+}
+
+/**
+ * scx_task_iter_next - Next task
+ * @iter: iterator to walk
+ *
+ * Visit the next task. See scx_task_iter_init() for details.
+ */
+static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
+{
+ struct list_head *cursor = &iter->cursor.tasks_node;
+ struct sched_ext_entity *pos;
+
+ lockdep_assert_held(&scx_tasks_lock);
+
+ list_for_each_entry(pos, cursor, tasks_node) {
+ if (&pos->tasks_node == &scx_tasks)
+ return NULL;
+ if (!(pos->flags & SCX_TASK_CURSOR)) {
+ list_move(cursor, &pos->tasks_node);
+ return container_of(pos, struct task_struct, scx);
+ }
+ }
+
+ /* can't happen, should always terminate at scx_tasks above */
+ BUG();
+}
+
+/**
+ * scx_task_iter_next_filtered - Next non-idle task
+ * @iter: iterator to walk
+ *
+ * Visit the next non-idle task. See scx_task_iter_init() for details.
+ */
+static struct task_struct *
+scx_task_iter_next_filtered(struct scx_task_iter *iter)
+{
+ struct task_struct *p;
+
+ while ((p = scx_task_iter_next(iter))) {
+ /*
+ * is_idle_task() tests %PF_IDLE which may not be set for CPUs
+ * which haven't yet been onlined. Test sched_class directly.
+ */
+ if (p->sched_class != &idle_sched_class)
+ return p;
+ }
+ return NULL;
+}
+
+/**
+ * scx_task_iter_next_filtered_locked - Next non-idle task with its rq locked
+ * @iter: iterator to walk
+ *
+ * Visit the next non-idle task with its rq lock held. See scx_task_iter_init()
+ * for details.
+ */
+static struct task_struct *
+scx_task_iter_next_filtered_locked(struct scx_task_iter *iter)
+{
+ struct task_struct *p;
+
+ if (iter->locked) {
+ task_rq_unlock(iter->rq, iter->locked, &iter->rf);
+ iter->locked = NULL;
+ }
+
+ p = scx_task_iter_next_filtered(iter);
+ if (!p)
+ return NULL;
+
+ iter->rq = task_rq_lock(p, &iter->rf);
+ iter->locked = p;
+ return p;
+}
+
+static enum scx_ops_enable_state scx_ops_enable_state(void)
+{
+ return atomic_read(&scx_ops_enable_state_var);
+}
+
+static enum scx_ops_enable_state
+scx_ops_set_enable_state(enum scx_ops_enable_state to)
+{
+ return atomic_xchg(&scx_ops_enable_state_var, to);
+}
+
+static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to,
+ enum scx_ops_enable_state from)
+{
+ int from_v = from;
+
+ return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to);
+}
+
+static bool scx_ops_bypassing(void)
+{
+ return unlikely(atomic_read(&scx_ops_bypass_depth));
+}
+
+/**
+ * wait_ops_state - Busy-wait the specified ops state to end
+ * @p: target task
+ * @opss: state to wait the end of
+ *
+ * Busy-wait for @p to transition out of @opss. This can only be used when the
+ * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
+ * has load_acquire semantics to ensure that the caller can see the updates made
+ * in the enqueueing and dispatching paths.
+ */
+static void wait_ops_state(struct task_struct *p, unsigned long opss)
+{
+ do {
+ cpu_relax();
+ } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
+}
+
+/**
+ * ops_cpu_valid - Verify a cpu number
+ * @cpu: cpu number which came from a BPF ops
+ * @where: extra information reported on error
+ *
+ * @cpu is a cpu number which came from the BPF scheduler and can be any value.
+ * Verify that it is in range and one of the possible cpus. If invalid, trigger
+ * an ops error.
+ */
+static bool ops_cpu_valid(s32 cpu, const char *where)
+{
+ if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) {
+ return true;
+ } else {
+ scx_ops_error("invalid CPU %d%s%s", cpu,
+ where ? " " : "", where ?: "");
+ return false;
+ }
+}
+
+/**
+ * ops_sanitize_err - Sanitize a -errno value
+ * @ops_name: operation to blame on failure
+ * @err: -errno value to sanitize
+ *
+ * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return
+ * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
+ * cause misbehaviors. For an example, a large negative return from
+ * ops.init_task() triggers an oops when passed up the call chain because the
+ * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
+ * handled as a pointer.
+ */
+static int ops_sanitize_err(const char *ops_name, s32 err)
+{
+ if (err < 0 && err >= -MAX_ERRNO)
+ return err;
+
+ scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err);
+ return -EPROTO;
+}
+
+static void update_curr_scx(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ u64 now = rq_clock_task(rq);
+ u64 delta_exec;
+
+ if (time_before_eq64(now, curr->se.exec_start))
+ return;
+
+ delta_exec = now - curr->se.exec_start;
+ curr->se.exec_start = now;
+ curr->se.sum_exec_runtime += delta_exec;
+ account_group_exec_runtime(curr, delta_exec);
+ cgroup_account_cputime(curr, delta_exec);
+
+ curr->scx.slice -= min(curr->scx.slice, delta_exec);
+}
+
+static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
+{
+ /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
+ WRITE_ONCE(dsq->nr, dsq->nr + delta);
+}
+
+static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p,
+ u64 enq_flags)
+{
+ bool is_local = dsq->id == SCX_DSQ_LOCAL;
+
+ WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_node));
+
+ if (!is_local) {
+ raw_spin_lock(&dsq->lock);
+ if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
+ scx_ops_error("attempting to dispatch to a destroyed dsq");
+ /* fall back to the global dsq */
+ raw_spin_unlock(&dsq->lock);
+ dsq = &scx_dsq_global;
+ raw_spin_lock(&dsq->lock);
+ }
+ }
+
+ if (enq_flags & SCX_ENQ_HEAD)
+ list_add(&p->scx.dsq_node, &dsq->list);
+ else
+ list_add_tail(&p->scx.dsq_node, &dsq->list);
+
+ dsq_mod_nr(dsq, 1);
+ p->scx.dsq = dsq;
+
+ /*
+ * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
+ * direct dispatch path, but we clear them here because the direct
+ * dispatch verdict may be overridden on the enqueue path during e.g.
+ * bypass.
+ */
+ p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
+ p->scx.ddsp_enq_flags = 0;
+
+ /*
+ * We're transitioning out of QUEUEING or DISPATCHING. store_release to
+ * match waiters' load_acquire.
+ */
+ if (enq_flags & SCX_ENQ_CLEAR_OPSS)
+ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
+
+ if (is_local) {
+ struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
+
+ if (sched_class_above(&ext_sched_class, rq->curr->sched_class))
+ resched_curr(rq);
+ } else {
+ raw_spin_unlock(&dsq->lock);
+ }
+}
+
+static void dispatch_dequeue(struct scx_rq *scx_rq, struct task_struct *p)
+{
+ struct scx_dispatch_q *dsq = p->scx.dsq;
+ bool is_local = dsq == &scx_rq->local_dsq;
+
+ if (!dsq) {
+ WARN_ON_ONCE(!list_empty(&p->scx.dsq_node));
+ /*
+ * When dispatching directly from the BPF scheduler to a local
+ * DSQ, the task isn't associated with any DSQ but
+ * @p->scx.holding_cpu may be set under the protection of
+ * %SCX_OPSS_DISPATCHING.
+ */
+ if (p->scx.holding_cpu >= 0)
+ p->scx.holding_cpu = -1;
+ return;
+ }
+
+ if (!is_local)
+ raw_spin_lock(&dsq->lock);
+
+ /*
+ * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_node
+ * can't change underneath us.
+ */
+ if (p->scx.holding_cpu < 0) {
+ /* @p must still be on @dsq, dequeue */
+ WARN_ON_ONCE(list_empty(&p->scx.dsq_node));
+ list_del_init(&p->scx.dsq_node);
+ dsq_mod_nr(dsq, -1);
+ } else {
+ /*
+ * We're racing against dispatch_to_local_dsq() which already
+ * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
+ * holding_cpu which tells dispatch_to_local_dsq() that it lost
+ * the race.
+ */
+ WARN_ON_ONCE(!list_empty(&p->scx.dsq_node));
+ p->scx.holding_cpu = -1;
+ }
+ p->scx.dsq = NULL;
+
+ if (!is_local)
+ raw_spin_unlock(&dsq->lock);
+}
+
+static struct scx_dispatch_q *find_user_dsq(u64 dsq_id)
+{
+ return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params);
+}
+
+static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id)
+{
+ lockdep_assert(rcu_read_lock_any_held());
+
+ if (dsq_id == SCX_DSQ_GLOBAL)
+ return &scx_dsq_global;
+ else
+ return find_user_dsq(dsq_id);
+}
+
+static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id,
+ struct task_struct *p)
+{
+ struct scx_dispatch_q *dsq;
+
+ if (dsq_id == SCX_DSQ_LOCAL)
+ return &rq->scx.local_dsq;
+
+ dsq = find_non_local_dsq(dsq_id);
+ if (unlikely(!dsq)) {
+ scx_ops_error("non-existent DSQ 0x%llx for %s[%d]",
+ dsq_id, p->comm, p->pid);
+ return &scx_dsq_global;
+ }
+
+ return dsq;
+}
+
+static void mark_direct_dispatch(struct task_struct *ddsp_task,
+ struct task_struct *p, u64 dsq_id,
+ u64 enq_flags)
+{
+ /*
+ * Mark that dispatch already happened from ops.select_cpu() or
+ * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
+ * which can never match a valid task pointer.
+ */
+ __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
+
+ /* @p must match the task on the enqueue path */
+ if (unlikely(p != ddsp_task)) {
+ if (IS_ERR(ddsp_task))
+ scx_ops_error("%s[%d] already direct-dispatched",
+ p->comm, p->pid);
+ else
+ scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
+ ddsp_task->comm, ddsp_task->pid,
+ p->comm, p->pid);
+ return;
+ }
+
+ /*
+ * %SCX_DSQ_LOCAL_ON is not supported during direct dispatch because
+ * dispatching to the local DSQ of a different CPU requires unlocking
+ * the current rq which isn't allowed in the enqueue path. Use
+ * ops.select_cpu() to be on the target CPU and then %SCX_DSQ_LOCAL.
+ */
+ if (unlikely((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON)) {
+ scx_ops_error("SCX_DSQ_LOCAL_ON can't be used for direct-dispatch");
+ return;
+ }
+
+ WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
+ WARN_ON_ONCE(p->scx.ddsp_enq_flags);
+
+ p->scx.ddsp_dsq_id = dsq_id;
+ p->scx.ddsp_enq_flags = enq_flags;
+}
+
+static void direct_dispatch(struct task_struct *p, u64 enq_flags)
+{
+ struct scx_dispatch_q *dsq;
+
+ enq_flags |= (p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
+ dsq = find_dsq_for_dispatch(task_rq(p), p->scx.ddsp_dsq_id, p);
+ dispatch_enqueue(dsq, p, enq_flags);
+}
+
+static bool test_rq_online(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+ return rq->online;
+#else
+ return true;
+#endif
+}
+
+static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
+ int sticky_cpu)
+{
+ struct task_struct **ddsp_taskp;
+ unsigned long qseq;
+
+ WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
+
+ /* rq migration */
+ if (sticky_cpu == cpu_of(rq))
+ goto local_norefill;
+
+ /*
+ * If !rq->online, we already told the BPF scheduler that the CPU is
+ * offline. We're just trying to on/offline the CPU. Don't bother the
+ * BPF scheduler.
+ */
+ if (unlikely(!test_rq_online(rq)))
+ goto local;
+
+ if (scx_ops_bypassing()) {
+ if (enq_flags & SCX_ENQ_LAST)
+ goto local;
+ else
+ goto global;
+ }
+
+ if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
+ goto direct;
+
+ /* see %SCX_OPS_ENQ_EXITING */
+ if (!static_branch_unlikely(&scx_ops_enq_exiting) &&
+ unlikely(p->flags & PF_EXITING))
+ goto local;
+
+ /* see %SCX_OPS_ENQ_LAST */
+ if (!static_branch_unlikely(&scx_ops_enq_last) &&
+ (enq_flags & SCX_ENQ_LAST))
+ goto local;
+
+ if (!SCX_HAS_OP(enqueue))
+ goto global;
+
+ /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
+ qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
+
+ WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
+ atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
+
+ ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
+ WARN_ON_ONCE(*ddsp_taskp);
+ *ddsp_taskp = p;
+
+ SCX_CALL_OP(SCX_KF_ENQUEUE, enqueue, p, enq_flags);
+
+ *ddsp_taskp = NULL;
+ if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
+ goto direct;
+
+ /*
+ * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
+ * dequeue may be waiting. The store_release matches their load_acquire.
+ */
+ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
+ return;
+
+direct:
+ direct_dispatch(p, enq_flags);
+ return;
+
+local:
+ p->scx.slice = SCX_SLICE_DFL;
+local_norefill:
+ dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags);
+ return;
+
+global:
+ p->scx.slice = SCX_SLICE_DFL;
+ dispatch_enqueue(&scx_dsq_global, p, enq_flags);
+}
+
+static bool task_runnable(const struct task_struct *p)
+{
+ return !list_empty(&p->scx.runnable_node);
+}
+
+static void set_task_runnable(struct rq *rq, struct task_struct *p)
+{
+ lockdep_assert_rq_held(rq);
+
+ /*
+ * list_add_tail() must be used. scx_ops_bypass() depends on tasks being
+ * appened to the runnable_list.
+ */
+ list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
+}
+
+static void clr_task_runnable(struct task_struct *p)
+{
+ list_del_init(&p->scx.runnable_node);
+}
+
+static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
+{
+ int sticky_cpu = p->scx.sticky_cpu;
+
+ enq_flags |= rq->scx.extra_enq_flags;
+
+ if (sticky_cpu >= 0)
+ p->scx.sticky_cpu = -1;
+
+ /*
+ * Restoring a running task will be immediately followed by
+ * set_next_task_scx() which expects the task to not be on the BPF
+ * scheduler as tasks can only start running through local DSQs. Force
+ * direct-dispatch into the local DSQ by setting the sticky_cpu.
+ */
+ if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
+ sticky_cpu = cpu_of(rq);
+
+ if (p->scx.flags & SCX_TASK_QUEUED) {
+ WARN_ON_ONCE(!task_runnable(p));
+ return;
+ }
+
+ set_task_runnable(rq, p);
+ p->scx.flags |= SCX_TASK_QUEUED;
+ rq->scx.nr_running++;
+ add_nr_running(rq, 1);
+
+ do_enqueue_task(rq, p, enq_flags, sticky_cpu);
+}
+
+static void ops_dequeue(struct task_struct *p, u64 deq_flags)
+{
+ unsigned long opss;
+
+ clr_task_runnable(p);
+
+ /* acquire ensures that we see the preceding updates on QUEUED */
+ opss = atomic_long_read_acquire(&p->scx.ops_state);
+
+ switch (opss & SCX_OPSS_STATE_MASK) {
+ case SCX_OPSS_NONE:
+ break;
+ case SCX_OPSS_QUEUEING:
+ /*
+ * QUEUEING is started and finished while holding @p's rq lock.
+ * As we're holding the rq lock now, we shouldn't see QUEUEING.
+ */
+ BUG();
+ case SCX_OPSS_QUEUED:
+ if (SCX_HAS_OP(dequeue))
+ SCX_CALL_OP(SCX_KF_REST, dequeue, p, deq_flags);
+
+ if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
+ SCX_OPSS_NONE))
+ break;
+ fallthrough;
+ case SCX_OPSS_DISPATCHING:
+ /*
+ * If @p is being dispatched from the BPF scheduler to a DSQ,
+ * wait for the transfer to complete so that @p doesn't get
+ * added to its DSQ after dequeueing is complete.
+ *
+ * As we're waiting on DISPATCHING with the rq locked, the
+ * dispatching side shouldn't try to lock the rq while
+ * DISPATCHING is set. See dispatch_to_local_dsq().
+ *
+ * DISPATCHING shouldn't have qseq set and control can reach
+ * here with NONE @opss from the above QUEUED case block.
+ * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
+ */
+ wait_ops_state(p, SCX_OPSS_DISPATCHING);
+ BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
+ break;
+ }
+}
+
+static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
+{
+ struct scx_rq *scx_rq = &rq->scx;
+
+ if (!(p->scx.flags & SCX_TASK_QUEUED)) {
+ WARN_ON_ONCE(task_runnable(p));
+ return;
+ }
+
+ ops_dequeue(p, deq_flags);
+
+ if (deq_flags & SCX_DEQ_SLEEP)
+ p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
+ else
+ p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
+
+ p->scx.flags &= ~SCX_TASK_QUEUED;
+ scx_rq->nr_running--;
+ sub_nr_running(rq, 1);
+
+ dispatch_dequeue(scx_rq, p);
+}
+
+static void yield_task_scx(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ if (SCX_HAS_OP(yield))
+ SCX_CALL_OP_RET(SCX_KF_REST, yield, p, NULL);
+ else
+ p->scx.slice = 0;
+}
+
+static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
+{
+ struct task_struct *from = rq->curr;
+
+ if (SCX_HAS_OP(yield))
+ return SCX_CALL_OP_RET(SCX_KF_REST, yield, from, to);
+ else
+ return false;
+}
+
+#ifdef CONFIG_SMP
+/**
+ * move_task_to_local_dsq - Move a task from a different rq to a local DSQ
+ * @rq: rq to move the task into, currently locked
+ * @p: task to move
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * Move @p which is currently on a different rq to @rq's local DSQ. The caller
+ * must:
+ *
+ * 1. Start with exclusive access to @p either through its DSQ lock or
+ * %SCX_OPSS_DISPATCHING flag.
+ *
+ * 2. Set @p->scx.holding_cpu to raw_smp_processor_id().
+ *
+ * 3. Remember task_rq(@p). Release the exclusive access so that we don't
+ * deadlock with dequeue.
+ *
+ * 4. Lock @rq and the task_rq from #3.
+ *
+ * 5. Call this function.
+ *
+ * Returns %true if @p was successfully moved. %false after racing dequeue and
+ * losing.
+ */
+static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p,
+ u64 enq_flags)
+{
+ struct rq *task_rq;
+
+ lockdep_assert_rq_held(rq);
+
+ /*
+ * If dequeue got to @p while we were trying to lock both rq's, it'd
+ * have cleared @p->scx.holding_cpu to -1. While other cpus may have
+ * updated it to different values afterwards, as this operation can't be
+ * preempted or recurse, @p->scx.holding_cpu can never become
+ * raw_smp_processor_id() again before we're done. Thus, we can tell
+ * whether we lost to dequeue by testing whether @p->scx.holding_cpu is
+ * still raw_smp_processor_id().
+ *
+ * See dispatch_dequeue() for the counterpart.
+ */
+ if (unlikely(p->scx.holding_cpu != raw_smp_processor_id()))
+ return false;
+
+ /* @p->rq couldn't have changed if we're still the holding cpu */
+ task_rq = task_rq(p);
+ lockdep_assert_rq_held(task_rq);
+
+ WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr));
+ deactivate_task(task_rq, p, 0);
+ set_task_cpu(p, cpu_of(rq));
+ p->scx.sticky_cpu = cpu_of(rq);
+
+ /*
+ * We want to pass scx-specific enq_flags but activate_task() will
+ * truncate the upper 32 bit. As we own @rq, we can pass them through
+ * @rq->scx.extra_enq_flags instead.
+ */
+ WARN_ON_ONCE(rq->scx.extra_enq_flags);
+ rq->scx.extra_enq_flags = enq_flags;
+ activate_task(rq, p, 0);
+ rq->scx.extra_enq_flags = 0;
+
+ return true;
+}
+
+/**
+ * dispatch_to_local_dsq_lock - Ensure source and desitnation rq's are locked
+ * @rq: current rq which is locked
+ * @rf: rq_flags to use when unlocking @rq
+ * @src_rq: rq to move task from
+ * @dst_rq: rq to move task to
+ *
+ * We're holding @rq lock and trying to dispatch a task from @src_rq to
+ * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether
+ * @rq stays locked isn't important as long as the state is restored after
+ * dispatch_to_local_dsq_unlock().
+ */
+static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq_flags *rf,
+ struct rq *src_rq, struct rq *dst_rq)
+{
+ rq_unpin_lock(rq, rf);
+
+ if (src_rq == dst_rq) {
+ raw_spin_rq_unlock(rq);
+ raw_spin_rq_lock(dst_rq);
+ } else if (rq == src_rq) {
+ double_lock_balance(rq, dst_rq);
+ rq_repin_lock(rq, rf);
+ } else if (rq == dst_rq) {
+ double_lock_balance(rq, src_rq);
+ rq_repin_lock(rq, rf);
+ } else {
+ raw_spin_rq_unlock(rq);
+ double_rq_lock(src_rq, dst_rq);
+ }
+}
+
+/**
+ * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock()
+ * @rq: current rq which is locked
+ * @rf: rq_flags to use when unlocking @rq
+ * @src_rq: rq to move task from
+ * @dst_rq: rq to move task to
+ *
+ * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return.
+ */
+static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq_flags *rf,
+ struct rq *src_rq, struct rq *dst_rq)
+{
+ if (src_rq == dst_rq) {
+ raw_spin_rq_unlock(dst_rq);
+ raw_spin_rq_lock(rq);
+ rq_repin_lock(rq, rf);
+ } else if (rq == src_rq) {
+ double_unlock_balance(rq, dst_rq);
+ } else if (rq == dst_rq) {
+ double_unlock_balance(rq, src_rq);
+ } else {
+ double_rq_unlock(src_rq, dst_rq);
+ raw_spin_rq_lock(rq);
+ rq_repin_lock(rq, rf);
+ }
+}
+#endif /* CONFIG_SMP */
+
+static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq,
+ struct task_struct *p)
+{
+ struct scx_rq *scx_rq = &rq->scx;
+
+ lockdep_assert_held(&dsq->lock); /* released on return */
+
+ /* @dsq is locked and @p is on this rq */
+ WARN_ON_ONCE(p->scx.holding_cpu >= 0);
+ list_move_tail(&p->scx.dsq_node, &scx_rq->local_dsq.list);
+ dsq_mod_nr(dsq, -1);
+ dsq_mod_nr(&scx_rq->local_dsq, 1);
+ p->scx.dsq = &scx_rq->local_dsq;
+ raw_spin_unlock(&dsq->lock);
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p
+ * can be pulled to @rq.
+ */
+static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq)
+{
+ int cpu = cpu_of(rq);
+
+ if (!cpumask_test_cpu(cpu, p->cpus_ptr))
+ return false;
+ if (unlikely(is_migration_disabled(p)))
+ return false;
+ if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p)))
+ return false;
+ if (unlikely(!test_rq_online(rq)))
+ return false;
+ return true;
+}
+
+static bool consume_remote_task(struct rq *rq, struct rq_flags *rf,
+ struct scx_dispatch_q *dsq,
+ struct task_struct *p, struct rq *task_rq)
+{
+ bool moved = false;
+
+ lockdep_assert_held(&dsq->lock); /* released on return */
+
+ /*
+ * @dsq is locked and @p is on a remote rq. @p is currently protected by
+ * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab
+ * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the
+ * rq lock or fail, do a little dancing from our side. See
+ * move_task_to_local_dsq().
+ */
+ WARN_ON_ONCE(p->scx.holding_cpu >= 0);
+ list_del_init(&p->scx.dsq_node);
+ dsq_mod_nr(dsq, -1);
+ p->scx.holding_cpu = raw_smp_processor_id();
+ raw_spin_unlock(&dsq->lock);
+
+ rq_unpin_lock(rq, rf);
+ double_lock_balance(rq, task_rq);
+ rq_repin_lock(rq, rf);
+
+ moved = move_task_to_local_dsq(rq, p, 0);
+
+ double_unlock_balance(rq, task_rq);
+
+ return moved;
+}
+#else /* CONFIG_SMP */
+static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; }
+static bool consume_remote_task(struct rq *rq, struct rq_flags *rf,
+ struct scx_dispatch_q *dsq,
+ struct task_struct *p, struct rq *task_rq) { return false; }
+#endif /* CONFIG_SMP */
+
+static bool consume_dispatch_q(struct rq *rq, struct rq_flags *rf,
+ struct scx_dispatch_q *dsq)
+{
+ struct task_struct *p;
+retry:
+ if (list_empty(&dsq->list))
+ return false;
+
+ raw_spin_lock(&dsq->lock);
+
+ list_for_each_entry(p, &dsq->list, scx.dsq_node) {
+ struct rq *task_rq = task_rq(p);
+
+ if (rq == task_rq) {
+ consume_local_task(rq, dsq, p);
+ return true;
+ }
+
+ if (task_can_run_on_remote_rq(p, rq)) {
+ if (likely(consume_remote_task(rq, rf, dsq, p, task_rq)))
+ return true;
+ goto retry;
+ }
+ }
+
+ raw_spin_unlock(&dsq->lock);
+ return false;
+}
+
+enum dispatch_to_local_dsq_ret {
+ DTL_DISPATCHED, /* successfully dispatched */
+ DTL_LOST, /* lost race to dequeue */
+ DTL_NOT_LOCAL, /* destination is not a local DSQ */
+ DTL_INVALID, /* invalid local dsq_id */
+};
+
+/**
+ * dispatch_to_local_dsq - Dispatch a task to a local dsq
+ * @rq: current rq which is locked
+ * @rf: rq_flags to use when unlocking @rq
+ * @dsq_id: destination dsq ID
+ * @p: task to dispatch
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * We're holding @rq lock and want to dispatch @p to the local DSQ identified by
+ * @dsq_id. This function performs all the synchronization dancing needed
+ * because local DSQs are protected with rq locks.
+ *
+ * The caller must have exclusive ownership of @p (e.g. through
+ * %SCX_OPSS_DISPATCHING).
+ */
+static enum dispatch_to_local_dsq_ret
+dispatch_to_local_dsq(struct rq *rq, struct rq_flags *rf, u64 dsq_id,
+ struct task_struct *p, u64 enq_flags)
+{
+ struct rq *src_rq = task_rq(p);
+ struct rq *dst_rq;
+
+ /*
+ * We're synchronized against dequeue through DISPATCHING. As @p can't
+ * be dequeued, its task_rq and cpus_allowed are stable too.
+ */
+ if (dsq_id == SCX_DSQ_LOCAL) {
+ dst_rq = rq;
+ } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
+ s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
+
+ if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
+ return DTL_INVALID;
+ dst_rq = cpu_rq(cpu);
+ } else {
+ return DTL_NOT_LOCAL;
+ }
+
+ /* if dispatching to @rq that @p is already on, no lock dancing needed */
+ if (rq == src_rq && rq == dst_rq) {
+ dispatch_enqueue(&dst_rq->scx.local_dsq, p,
+ enq_flags | SCX_ENQ_CLEAR_OPSS);
+ return DTL_DISPATCHED;
+ }
+
+#ifdef CONFIG_SMP
+ if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) {
+ struct rq *locked_dst_rq = dst_rq;
+ bool dsp;
+
+ /*
+ * @p is on a possibly remote @src_rq which we need to lock to
+ * move the task. If dequeue is in progress, it'd be locking
+ * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq
+ * lock while holding DISPATCHING.
+ *
+ * As DISPATCHING guarantees that @p is wholly ours, we can
+ * pretend that we're moving from a DSQ and use the same
+ * mechanism - mark the task under transfer with holding_cpu,
+ * release DISPATCHING and then follow the same protocol.
+ */
+ p->scx.holding_cpu = raw_smp_processor_id();
+
+ /* store_release ensures that dequeue sees the above */
+ atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
+
+ dispatch_to_local_dsq_lock(rq, rf, src_rq, locked_dst_rq);
+
+ /*
+ * We don't require the BPF scheduler to avoid dispatching to
+ * offline CPUs mostly for convenience but also because CPUs can
+ * go offline between scx_bpf_dispatch() calls and here. If @p
+ * is destined to an offline CPU, queue it on its current CPU
+ * instead, which should always be safe. As this is an allowed
+ * behavior, don't trigger an ops error.
+ */
+ if (unlikely(!test_rq_online(dst_rq)))
+ dst_rq = src_rq;
+
+ if (src_rq == dst_rq) {
+ /*
+ * As @p is staying on the same rq, there's no need to
+ * go through the full deactivate/activate cycle.
+ * Optimize by abbreviating the operations in
+ * move_task_to_local_dsq().
+ */
+ dsp = p->scx.holding_cpu == raw_smp_processor_id();
+ if (likely(dsp)) {
+ p->scx.holding_cpu = -1;
+ dispatch_enqueue(&dst_rq->scx.local_dsq, p,
+ enq_flags);
+ }
+ } else {
+ dsp = move_task_to_local_dsq(dst_rq, p, enq_flags);
+ }
+
+ /* if the destination CPU is idle, wake it up */
+ if (dsp && p->sched_class > dst_rq->curr->sched_class)
+ resched_curr(dst_rq);
+
+ dispatch_to_local_dsq_unlock(rq, rf, src_rq, locked_dst_rq);
+
+ return dsp ? DTL_DISPATCHED : DTL_LOST;
+ }
+#endif /* CONFIG_SMP */
+
+ scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]",
+ cpu_of(dst_rq), p->comm, p->pid);
+ return DTL_INVALID;
+}
+
+/**
+ * finish_dispatch - Asynchronously finish dispatching a task
+ * @rq: current rq which is locked
+ * @rf: rq_flags to use when unlocking @rq
+ * @p: task to finish dispatching
+ * @qseq_at_dispatch: qseq when @p started getting dispatched
+ * @dsq_id: destination DSQ ID
+ * @enq_flags: %SCX_ENQ_*
+ *
+ * Dispatching to local DSQs may need to wait for queueing to complete or
+ * require rq lock dancing. As we don't wanna do either while inside
+ * ops.dispatch() to avoid locking order inversion, we split dispatching into
+ * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the
+ * task and its qseq. Once ops.dispatch() returns, this function is called to
+ * finish up.
+ *
+ * There is no guarantee that @p is still valid for dispatching or even that it
+ * was valid in the first place. Make sure that the task is still owned by the
+ * BPF scheduler and claim the ownership before dispatching.
+ */
+static void finish_dispatch(struct rq *rq, struct rq_flags *rf,
+ struct task_struct *p,
+ unsigned long qseq_at_dispatch,
+ u64 dsq_id, u64 enq_flags)
+{
+ struct scx_dispatch_q *dsq;
+ unsigned long opss;
+
+retry:
+ /*
+ * No need for _acquire here. @p is accessed only after a successful
+ * try_cmpxchg to DISPATCHING.
+ */
+ opss = atomic_long_read(&p->scx.ops_state);
+
+ switch (opss & SCX_OPSS_STATE_MASK) {
+ case SCX_OPSS_DISPATCHING:
+ case SCX_OPSS_NONE:
+ /* someone else already got to it */
+ return;
+ case SCX_OPSS_QUEUED:
+ /*
+ * If qseq doesn't match, @p has gone through at least one
+ * dispatch/dequeue and re-enqueue cycle between
+ * scx_bpf_dispatch() and here and we have no claim on it.
+ */
+ if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
+ return;
+
+ /*
+ * While we know @p is accessible, we don't yet have a claim on
+ * it - the BPF scheduler is allowed to dispatch tasks
+ * spuriously and there can be a racing dequeue attempt. Let's
+ * claim @p by atomically transitioning it from QUEUED to
+ * DISPATCHING.
+ */
+ if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
+ SCX_OPSS_DISPATCHING)))
+ break;
+ goto retry;
+ case SCX_OPSS_QUEUEING:
+ /*
+ * do_enqueue_task() is in the process of transferring the task
+ * to the BPF scheduler while holding @p's rq lock. As we aren't
+ * holding any kernel or BPF resource that the enqueue path may
+ * depend upon, it's safe to wait.
+ */
+ wait_ops_state(p, opss);
+ goto retry;
+ }
+
+ BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
+
+ switch (dispatch_to_local_dsq(rq, rf, dsq_id, p, enq_flags)) {
+ case DTL_DISPATCHED:
+ break;
+ case DTL_LOST:
+ break;
+ case DTL_INVALID:
+ dsq_id = SCX_DSQ_GLOBAL;
+ fallthrough;
+ case DTL_NOT_LOCAL:
+ dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()),
+ dsq_id, p);
+ dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
+ break;
+ }
+}
+
+static void flush_dispatch_buf(struct rq *rq, struct rq_flags *rf)
+{
+ struct scx_dsp_ctx *dspc = this_cpu_ptr(&scx_dsp_ctx);
+ u32 u;
+
+ for (u = 0; u < dspc->buf_cursor; u++) {
+ struct scx_dsp_buf_ent *ent = &this_cpu_ptr(scx_dsp_buf)[u];
+
+ finish_dispatch(rq, rf, ent->task, ent->qseq, ent->dsq_id,
+ ent->enq_flags);
+ }
+
+ dspc->nr_tasks += dspc->buf_cursor;
+ dspc->buf_cursor = 0;
+}
+
+static int balance_scx(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf)
+{
+ struct scx_rq *scx_rq = &rq->scx;
+ struct scx_dsp_ctx *dspc = this_cpu_ptr(&scx_dsp_ctx);
+ bool prev_on_scx = prev->sched_class == &ext_sched_class;
+
+ lockdep_assert_rq_held(rq);
+
+ if (prev_on_scx) {
+ WARN_ON_ONCE(prev->scx.flags & SCX_TASK_BAL_KEEP);
+ update_curr_scx(rq);
+
+ /*
+ * If @prev is runnable & has slice left, it has priority and
+ * fetching more just increases latency for the fetched tasks.
+ * Tell put_prev_task_scx() to put @prev on local_dsq.
+ *
+ * See scx_ops_disable_workfn() for the explanation on the
+ * bypassing test.
+ */
+ if ((prev->scx.flags & SCX_TASK_QUEUED) &&
+ prev->scx.slice && !scx_ops_bypassing()) {
+ prev->scx.flags |= SCX_TASK_BAL_KEEP;
+ return 1;
+ }
+ }
+
+ /* if there already are tasks to run, nothing to do */
+ if (scx_rq->local_dsq.nr)
+ return 1;
+
+ if (consume_dispatch_q(rq, rf, &scx_dsq_global))
+ return 1;
+
+ if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing())
+ return 0;
+
+ dspc->rq = rq;
+ dspc->rf = rf;
+
+ /*
+ * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
+ * the local DSQ might still end up empty after a successful
+ * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
+ * produced some tasks, retry. The BPF scheduler may depend on this
+ * looping behavior to simplify its implementation.
+ */
+ do {
+ dspc->nr_tasks = 0;
+
+ SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq),
+ prev_on_scx ? prev : NULL);
+
+ flush_dispatch_buf(rq, rf);
+
+ if (scx_rq->local_dsq.nr)
+ return 1;
+ if (consume_dispatch_q(rq, rf, &scx_dsq_global))
+ return 1;
+ } while (dspc->nr_tasks);
+
+ return 0;
+}
+
+static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
+{
+ if (p->scx.flags & SCX_TASK_QUEUED) {
+ WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
+ dispatch_dequeue(&rq->scx, p);
+ }
+
+ p->se.exec_start = rq_clock_task(rq);
+
+ clr_task_runnable(p);
+}
+
+static void put_prev_task_scx(struct rq *rq, struct task_struct *p)
+{
+#ifndef CONFIG_SMP
+ /*
+ * UP workaround.
+ *
+ * Because SCX may transfer tasks across CPUs during dispatch, dispatch
+ * is performed from its balance operation which isn't called in UP.
+ * Let's work around by calling it from the operations which come right
+ * after.
+ *
+ * 1. If the prev task is on SCX, pick_next_task() calls
+ * .put_prev_task() right after. As .put_prev_task() is also called
+ * from other places, we need to distinguish the calls which can be
+ * done by looking at the previous task's state - if still queued or
+ * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task().
+ * This case is handled here.
+ *
+ * 2. If the prev task is not on SCX, the first following call into SCX
+ * will be .pick_next_task(), which is covered by calling
+ * balance_scx() from pick_next_task_scx().
+ *
+ * Note that we can't merge the first case into the second as
+ * balance_scx() must be called before the previous SCX task goes
+ * through put_prev_task_scx().
+ *
+ * As UP doesn't transfer tasks around, balance_scx() doesn't need @rf.
+ * Pass in %NULL.
+ */
+ if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP))
+ balance_scx(rq, p, NULL);
+#endif
+
+ update_curr_scx(rq);
+
+ /*
+ * If we're being called from put_prev_task_balance(), balance_scx() may
+ * have decided that @p should keep running.
+ */
+ if (p->scx.flags & SCX_TASK_BAL_KEEP) {
+ p->scx.flags &= ~SCX_TASK_BAL_KEEP;
+ set_task_runnable(rq, p);
+ dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
+ return;
+ }
+
+ if (p->scx.flags & SCX_TASK_QUEUED) {
+ set_task_runnable(rq, p);
+
+ /*
+ * If @p has slice left and balance_scx() didn't tag it for
+ * keeping, @p is getting preempted by a higher priority
+ * scheduler class. Leave it at the head of the local DSQ.
+ */
+ if (p->scx.slice && !scx_ops_bypassing()) {
+ dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD);
+ return;
+ }
+
+ /*
+ * If we're in the pick_next_task path, balance_scx() should
+ * have already populated the local DSQ if there are any other
+ * available tasks. If empty, tell ops.enqueue() that @p is the
+ * only one available for this cpu. ops.enqueue() should put it
+ * on the local DSQ so that the subsequent pick_next_task_scx()
+ * can find the task unless it wants to trigger a separate
+ * follow-up scheduling event.
+ */
+ if (list_empty(&rq->scx.local_dsq.list))
+ do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
+ else
+ do_enqueue_task(rq, p, 0, -1);
+ }
+}
+
+static struct task_struct *first_local_task(struct rq *rq)
+{
+ return list_first_entry_or_null(&rq->scx.local_dsq.list,
+ struct task_struct, scx.dsq_node);
+}
+
+static struct task_struct *pick_next_task_scx(struct rq *rq)
+{
+ struct task_struct *p;
+
+#ifndef CONFIG_SMP
+ /* UP workaround - see the comment at the head of put_prev_task_scx() */
+ if (unlikely(rq->curr->sched_class != &ext_sched_class))
+ balance_scx(rq, rq->curr, NULL);
+#endif
+
+ p = first_local_task(rq);
+ if (!p)
+ return NULL;
+
+ set_next_task_scx(rq, p, true);
+
+ if (unlikely(!p->scx.slice)) {
+ if (!scx_ops_bypassing() && !scx_warned_zero_slice) {
+ printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n",
+ p->comm, p->pid);
+ scx_warned_zero_slice = true;
+ }
+ p->scx.slice = SCX_SLICE_DFL;
+ }
+
+ return p;
+}
+
+#ifdef CONFIG_SMP
+
+static bool test_and_clear_cpu_idle(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+ /*
+ * SMT mask should be cleared whether we can claim @cpu or not. The SMT
+ * cluster is not wholly idle either way. This also prevents
+ * scx_pick_idle_cpu() from getting caught in an infinite loop.
+ */
+ if (sched_smt_active()) {
+ const struct cpumask *smt = cpu_smt_mask(cpu);
+
+ /*
+ * If offline, @cpu is not its own sibling and
+ * scx_pick_idle_cpu() can get caught in an infinite loop as
+ * @cpu is never cleared from idle_masks.smt. Ensure that @cpu
+ * is eventually cleared.
+ */
+ if (cpumask_intersects(smt, idle_masks.smt))
+ cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
+ else if (cpumask_test_cpu(cpu, idle_masks.smt))
+ __cpumask_clear_cpu(cpu, idle_masks.smt);
+ }
+#endif
+ return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu);
+}
+
+static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags)
+{
+ int cpu;
+
+retry:
+ if (sched_smt_active()) {
+ cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed);
+ if (cpu < nr_cpu_ids)
+ goto found;
+
+ if (flags & SCX_PICK_IDLE_CORE)
+ return -EBUSY;
+ }
+
+ cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed);
+ if (cpu >= nr_cpu_ids)
+ return -EBUSY;
+
+found:
+ if (test_and_clear_cpu_idle(cpu))
+ return cpu;
+ else
+ goto retry;
+}
+
+static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
+ u64 wake_flags, bool *found)
+{
+ s32 cpu;
+
+ *found = false;
+
+ if (!static_branch_likely(&scx_builtin_idle_enabled)) {
+ scx_ops_error("built-in idle tracking is disabled");
+ return prev_cpu;
+ }
+
+ /*
+ * If WAKE_SYNC, the waker's local DSQ is empty, and the system is
+ * under utilized, wake up @p to the local DSQ of the waker. Checking
+ * only for an empty local DSQ is insufficient as it could give the
+ * wakee an unfair advantage when the system is oversaturated.
+ * Checking only for the presence of idle CPUs is also insufficient as
+ * the local DSQ of the waker could have tasks piled up on it even if
+ * there is an idle core elsewhere on the system.
+ */
+ cpu = smp_processor_id();
+ if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 &&
+ !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) &&
+ cpu_rq(cpu)->scx.local_dsq.nr == 0) {
+ if (cpumask_test_cpu(cpu, p->cpus_ptr))
+ goto cpu_found;
+ }
+
+ if (p->nr_cpus_allowed == 1) {
+ if (test_and_clear_cpu_idle(prev_cpu)) {
+ cpu = prev_cpu;
+ goto cpu_found;
+ } else {
+ return prev_cpu;
+ }
+ }
+
+ /*
+ * If CPU has SMT, any wholly idle CPU is likely a better pick than
+ * partially idle @prev_cpu.
+ */
+ if (sched_smt_active()) {
+ if (cpumask_test_cpu(prev_cpu, idle_masks.smt) &&
+ test_and_clear_cpu_idle(prev_cpu)) {
+ cpu = prev_cpu;
+ goto cpu_found;
+ }
+
+ cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE);
+ if (cpu >= 0)
+ goto cpu_found;
+ }
+
+ if (test_and_clear_cpu_idle(prev_cpu)) {
+ cpu = prev_cpu;
+ goto cpu_found;
+ }
+
+ cpu = scx_pick_idle_cpu(p->cpus_ptr, 0);
+ if (cpu >= 0)
+ goto cpu_found;
+
+ return prev_cpu;
+
+cpu_found:
+ *found = true;
+ return cpu;
+}
+
+static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
+{
+ /*
+ * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
+ * can be a good migration opportunity with low cache and memory
+ * footprint. Returning a CPU different than @prev_cpu triggers
+ * immediate rq migration. However, for SCX, as the current rq
+ * association doesn't dictate where the task is going to run, this
+ * doesn't fit well. If necessary, we can later add a dedicated method
+ * which can decide to preempt self to force it through the regular
+ * scheduling path.
+ */
+ if (unlikely(wake_flags & WF_EXEC))
+ return prev_cpu;
+
+ if (SCX_HAS_OP(select_cpu)) {
+ s32 cpu;
+ struct task_struct **ddsp_taskp;
+
+ ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
+ WARN_ON_ONCE(*ddsp_taskp);
+ *ddsp_taskp = p;
+
+ cpu = SCX_CALL_OP_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
+ select_cpu, p, prev_cpu, wake_flags);
+ *ddsp_taskp = NULL;
+ if (ops_cpu_valid(cpu, "from ops.select_cpu()"))
+ return cpu;
+ else
+ return prev_cpu;
+ } else {
+ bool found;
+ s32 cpu;
+
+ cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found);
+ if (found) {
+ p->scx.slice = SCX_SLICE_DFL;
+ p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
+ }
+ return cpu;
+ }
+}
+
+static void set_cpus_allowed_scx(struct task_struct *p,
+ struct affinity_context *ac)
+{
+ set_cpus_allowed_common(p, ac);
+
+ /*
+ * The effective cpumask is stored in @p->cpus_ptr which may temporarily
+ * differ from the configured one in @p->cpus_mask. Always tell the bpf
+ * scheduler the effective one.
+ *
+ * Fine-grained memory write control is enforced by BPF making the const
+ * designation pointless. Cast it away when calling the operation.
+ */
+ if (SCX_HAS_OP(set_cpumask))
+ SCX_CALL_OP(SCX_KF_REST, set_cpumask, p,
+ (struct cpumask *)p->cpus_ptr);
+}
+
+static void reset_idle_masks(void)
+{
+ /*
+ * Consider all online cpus idle. Should converge to the actual state
+ * quickly.
+ */
+ cpumask_copy(idle_masks.cpu, cpu_online_mask);
+ cpumask_copy(idle_masks.smt, cpu_online_mask);
+}
+
+void __scx_update_idle(struct rq *rq, bool idle)
+{
+ int cpu = cpu_of(rq);
+
+ if (SCX_HAS_OP(update_idle)) {
+ SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
+ if (!static_branch_unlikely(&scx_builtin_idle_enabled))
+ return;
+ }
+
+ if (idle)
+ cpumask_set_cpu(cpu, idle_masks.cpu);
+ else
+ cpumask_clear_cpu(cpu, idle_masks.cpu);
+
+#ifdef CONFIG_SCHED_SMT
+ if (sched_smt_active()) {
+ const struct cpumask *smt = cpu_smt_mask(cpu);
+
+ if (idle) {
+ /*
+ * idle_masks.smt handling is racy but that's fine as
+ * it's only for optimization and self-correcting.
+ */
+ for_each_cpu(cpu, smt) {
+ if (!cpumask_test_cpu(cpu, idle_masks.cpu))
+ return;
+ }
+ cpumask_or(idle_masks.smt, idle_masks.smt, smt);
+ } else {
+ cpumask_andnot(idle_masks.smt, idle_masks.smt, smt);
+ }
+ }
+#endif
+}
+
+#else /* CONFIG_SMP */
+
+static bool test_and_clear_cpu_idle(int cpu) { return false; }
+static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; }
+static void reset_idle_masks(void) {}
+
+#endif /* CONFIG_SMP */
+
+static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
+{
+ update_other_load_avgs(rq);
+ update_curr_scx(rq);
+
+ /*
+ * While bypassing, always resched as we can't trust the slice
+ * management.
+ */
+ if (scx_ops_bypassing())
+ curr->scx.slice = 0;
+ else if (SCX_HAS_OP(tick))
+ SCX_CALL_OP(SCX_KF_REST, tick, curr);
+
+ if (!curr->scx.slice)
+ resched_curr(rq);
+}
+
+static enum scx_task_state scx_get_task_state(const struct task_struct *p)
+{
+ return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
+}
+
+static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
+{
+ enum scx_task_state prev_state = scx_get_task_state(p);
+ bool warn = false;
+
+ BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
+
+ switch (state) {
+ case SCX_TASK_NONE:
+ break;
+ case SCX_TASK_INIT:
+ warn = prev_state != SCX_TASK_NONE;
+ break;
+ case SCX_TASK_READY:
+ warn = prev_state == SCX_TASK_NONE;
+ break;
+ case SCX_TASK_ENABLED:
+ warn = prev_state != SCX_TASK_READY;
+ break;
+ default:
+ warn = true;
+ return;
+ }
+
+ WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
+ prev_state, state, p->comm, p->pid);
+
+ p->scx.flags &= ~SCX_TASK_STATE_MASK;
+ p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
+}
+
+static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork)
+{
+ int ret;
+
+ if (SCX_HAS_OP(init_task)) {
+ struct scx_init_task_args args = {
+ .fork = fork,
+ };
+
+ ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init_task, p, &args);
+ if (unlikely(ret)) {
+ ret = ops_sanitize_err("init_task", ret);
+ return ret;
+ }
+ }
+
+ scx_set_task_state(p, SCX_TASK_INIT);
+
+ return 0;
+}
+
+static void set_task_scx_weight(struct task_struct *p)
+{
+ u32 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
+
+ p->scx.weight = sched_weight_to_cgroup(weight);
+}
+
+static void scx_ops_enable_task(struct task_struct *p)
+{
+ lockdep_assert_rq_held(task_rq(p));
+
+ /*
+ * Set the weight before calling ops.enable() so that the scheduler
+ * doesn't see a stale value if they inspect the task struct.
+ */
+ set_task_scx_weight(p);
+ if (SCX_HAS_OP(enable))
+ SCX_CALL_OP(SCX_KF_REST, enable, p);
+ scx_set_task_state(p, SCX_TASK_ENABLED);
+
+ if (SCX_HAS_OP(set_weight))
+ SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight);
+}
+
+static void scx_ops_disable_task(struct task_struct *p)
+{
+ lockdep_assert_rq_held(task_rq(p));
+ WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
+
+ if (SCX_HAS_OP(disable))
+ SCX_CALL_OP(SCX_KF_REST, disable, p);
+ scx_set_task_state(p, SCX_TASK_READY);
+}
+
+static void scx_ops_exit_task(struct task_struct *p)
+{
+ struct scx_exit_task_args args = {
+ .cancelled = false,
+ };
+
+ lockdep_assert_rq_held(task_rq(p));
+
+ switch (scx_get_task_state(p)) {
+ case SCX_TASK_NONE:
+ return;
+ case SCX_TASK_INIT:
+ args.cancelled = true;
+ break;
+ case SCX_TASK_READY:
+ break;
+ case SCX_TASK_ENABLED:
+ scx_ops_disable_task(p);
+ break;
+ default:
+ WARN_ON_ONCE(true);
+ return;
+ }
+
+ if (SCX_HAS_OP(exit_task))
+ SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args);
+ scx_set_task_state(p, SCX_TASK_NONE);
+}
+
+void init_scx_entity(struct sched_ext_entity *scx)
+{
+ /*
+ * init_idle() calls this function again after fork sequence is
+ * complete. Don't touch ->tasks_node as it's already linked.
+ */
+ memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
+
+ INIT_LIST_HEAD(&scx->dsq_node);
+ scx->sticky_cpu = -1;
+ scx->holding_cpu = -1;
+ INIT_LIST_HEAD(&scx->runnable_node);
+ scx->ddsp_dsq_id = SCX_DSQ_INVALID;
+ scx->slice = SCX_SLICE_DFL;
+}
+
+void scx_pre_fork(struct task_struct *p)
+{
+ /*
+ * BPF scheduler enable/disable paths want to be able to iterate and
+ * update all tasks which can become complex when racing forks. As
+ * enable/disable are very cold paths, let's use a percpu_rwsem to
+ * exclude forks.
+ */
+ percpu_down_read(&scx_fork_rwsem);
+}
+
+int scx_fork(struct task_struct *p)
+{
+ percpu_rwsem_assert_held(&scx_fork_rwsem);
+
+ if (scx_enabled())
+ return scx_ops_init_task(p, task_group(p), true);
+ else
+ return 0;
+}
+
+void scx_post_fork(struct task_struct *p)
+{
+ if (scx_enabled()) {
+ scx_set_task_state(p, SCX_TASK_READY);
+
+ /*
+ * Enable the task immediately if it's running on sched_ext.
+ * Otherwise, it'll be enabled in switching_to_scx() if and
+ * when it's ever configured to run with a SCHED_EXT policy.
+ */
+ if (p->sched_class == &ext_sched_class) {
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ scx_ops_enable_task(p);
+ task_rq_unlock(rq, p, &rf);
+ }
+ }
+
+ spin_lock_irq(&scx_tasks_lock);
+ list_add_tail(&p->scx.tasks_node, &scx_tasks);
+ spin_unlock_irq(&scx_tasks_lock);
+
+ percpu_up_read(&scx_fork_rwsem);
+}
+
+void scx_cancel_fork(struct task_struct *p)
+{
+ if (scx_enabled()) {
+ struct rq *rq;
+ struct rq_flags rf;
+
+ rq = task_rq_lock(p, &rf);
+ WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
+ scx_ops_exit_task(p);
+ task_rq_unlock(rq, p, &rf);
+ }
+
+ percpu_up_read(&scx_fork_rwsem);
+}
+
+void sched_ext_free(struct task_struct *p)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&scx_tasks_lock, flags);
+ list_del_init(&p->scx.tasks_node);
+ spin_unlock_irqrestore(&scx_tasks_lock, flags);
+
+ /*
+ * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY ->
+ * ENABLED transitions can't race us. Disable ops for @p.
+ */
+ if (scx_get_task_state(p) != SCX_TASK_NONE) {
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ scx_ops_exit_task(p);
+ task_rq_unlock(rq, p, &rf);
+ }
+}
+
+static void reweight_task_scx(struct rq *rq, struct task_struct *p, int newprio)
+{
+ lockdep_assert_rq_held(task_rq(p));
+
+ set_task_scx_weight(p);
+ if (SCX_HAS_OP(set_weight))
+ SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight);
+}
+
+static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio)
+{
+}
+
+static void switching_to_scx(struct rq *rq, struct task_struct *p)
+{
+ scx_ops_enable_task(p);
+
+ /*
+ * set_cpus_allowed_scx() is not called while @p is associated with a
+ * different scheduler class. Keep the BPF scheduler up-to-date.
+ */
+ if (SCX_HAS_OP(set_cpumask))
+ SCX_CALL_OP(SCX_KF_REST, set_cpumask, p,
+ (struct cpumask *)p->cpus_ptr);
+}
+
+static void switched_from_scx(struct rq *rq, struct task_struct *p)
+{
+ scx_ops_disable_task(p);
+}
+
+static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
+static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
+
+/*
+ * Omitted operations:
+ *
+ * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
+ * isn't tied to the CPU at that point.
+ *
+ * - migrate_task_rq: Unncessary as task to cpu mapping is transient.
+ *
+ * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
+ * their current sched_class. Call them directly from sched core instead.
+ *
+ * - task_woken: Unnecessary.
+ */
+DEFINE_SCHED_CLASS(ext) = {
+ .enqueue_task = enqueue_task_scx,
+ .dequeue_task = dequeue_task_scx,
+ .yield_task = yield_task_scx,
+ .yield_to_task = yield_to_task_scx,
+
+ .wakeup_preempt = wakeup_preempt_scx,
+
+ .pick_next_task = pick_next_task_scx,
+
+ .put_prev_task = put_prev_task_scx,
+ .set_next_task = set_next_task_scx,
+
+#ifdef CONFIG_SMP
+ .balance = balance_scx,
+ .select_task_rq = select_task_rq_scx,
+ .set_cpus_allowed = set_cpus_allowed_scx,
+#endif
+
+ .task_tick = task_tick_scx,
+
+ .switching_to = switching_to_scx,
+ .switched_from = switched_from_scx,
+ .switched_to = switched_to_scx,
+ .reweight_task = reweight_task_scx,
+ .prio_changed = prio_changed_scx,
+
+ .update_curr = update_curr_scx,
+
+#ifdef CONFIG_UCLAMP_TASK
+ .uclamp_enabled = 0,
+#endif
+};
+
+static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
+{
+ memset(dsq, 0, sizeof(*dsq));
+
+ raw_spin_lock_init(&dsq->lock);
+ INIT_LIST_HEAD(&dsq->list);
+ dsq->id = dsq_id;
+}
+
+static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node)
+{
+ struct scx_dispatch_q *dsq;
+ int ret;
+
+ if (dsq_id & SCX_DSQ_FLAG_BUILTIN)
+ return ERR_PTR(-EINVAL);
+
+ dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
+ if (!dsq)
+ return ERR_PTR(-ENOMEM);
+
+ init_dsq(dsq, dsq_id);
+
+ ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node,
+ dsq_hash_params);
+ if (ret) {
+ kfree(dsq);
+ return ERR_PTR(ret);
+ }
+ return dsq;
+}
+
+static void free_dsq_irq_workfn(struct irq_work *irq_work)
+{
+ struct llist_node *to_free = llist_del_all(&dsqs_to_free);
+ struct scx_dispatch_q *dsq, *tmp_dsq;
+
+ llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
+ kfree_rcu(dsq, rcu);
+}
+
+static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
+
+static void destroy_dsq(u64 dsq_id)
+{
+ struct scx_dispatch_q *dsq;
+ unsigned long flags;
+
+ rcu_read_lock();
+
+ dsq = find_user_dsq(dsq_id);
+ if (!dsq)
+ goto out_unlock_rcu;
+
+ raw_spin_lock_irqsave(&dsq->lock, flags);
+
+ if (dsq->nr) {
+ scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)",
+ dsq->id, dsq->nr);
+ goto out_unlock_dsq;
+ }
+
+ if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params))
+ goto out_unlock_dsq;
+
+ /*
+ * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
+ * queueing more tasks. As this function can be called from anywhere,
+ * freeing is bounced through an irq work to avoid nesting RCU
+ * operations inside scheduler locks.
+ */
+ dsq->id = SCX_DSQ_INVALID;
+ llist_add(&dsq->free_node, &dsqs_to_free);
+ irq_work_queue(&free_dsq_irq_work);
+
+out_unlock_dsq:
+ raw_spin_unlock_irqrestore(&dsq->lock, flags);
+out_unlock_rcu:
+ rcu_read_unlock();
+}
+
+
+/********************************************************************************
+ * Sysfs interface and ops enable/disable.
+ */
+
+#define SCX_ATTR(_name) \
+ static struct kobj_attribute scx_attr_##_name = { \
+ .attr = { .name = __stringify(_name), .mode = 0444 }, \
+ .show = scx_attr_##_name##_show, \
+ }
+
+static ssize_t scx_attr_state_show(struct kobject *kobj,
+ struct kobj_attribute *ka, char *buf)
+{
+ return sysfs_emit(buf, "%s\n",
+ scx_ops_enable_state_str[scx_ops_enable_state()]);
+}
+SCX_ATTR(state);
+
+static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
+ struct kobj_attribute *ka, char *buf)
+{
+ return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
+}
+SCX_ATTR(switch_all);
+
+static struct attribute *scx_global_attrs[] = {
+ &scx_attr_state.attr,
+ &scx_attr_switch_all.attr,
+ NULL,
+};
+
+static const struct attribute_group scx_global_attr_group = {
+ .attrs = scx_global_attrs,
+};
+
+static void scx_kobj_release(struct kobject *kobj)
+{
+ kfree(kobj);
+}
+
+static ssize_t scx_attr_ops_show(struct kobject *kobj,
+ struct kobj_attribute *ka, char *buf)
+{
+ return sysfs_emit(buf, "%s\n", scx_ops.name);
+}
+SCX_ATTR(ops);
+
+static struct attribute *scx_sched_attrs[] = {
+ &scx_attr_ops.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(scx_sched);
+
+static const struct kobj_type scx_ktype = {
+ .release = scx_kobj_release,
+ .sysfs_ops = &kobj_sysfs_ops,
+ .default_groups = scx_sched_groups,
+};
+
+static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
+{
+ return add_uevent_var(env, "SCXOPS=%s", scx_ops.name);
+}
+
+static const struct kset_uevent_ops scx_uevent_ops = {
+ .uevent = scx_uevent,
+};
+
+/*
+ * Used by sched_fork() and __setscheduler_prio() to pick the matching
+ * sched_class. dl/rt are already handled.
+ */
+bool task_should_scx(struct task_struct *p)
+{
+ if (!scx_enabled() ||
+ unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
+ return false;
+ if (READ_ONCE(scx_switching_all))
+ return true;
+ return p->policy == SCHED_EXT;
+}
+
+/**
+ * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress
+ *
+ * Bypassing guarantees that all runnable tasks make forward progress without
+ * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
+ * be held by tasks that the BPF scheduler is forgetting to run, which
+ * unfortunately also excludes toggling the static branches.
+ *
+ * Let's work around by overriding a couple ops and modifying behaviors based on
+ * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
+ * to force global FIFO scheduling.
+ *
+ * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
+ *
+ * b. ops.dispatch() is ignored.
+ *
+ * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be
+ * trusted. Whenever a tick triggers, the running task is rotated to the tail
+ * of the queue.
+ *
+ * d. pick_next_task() suppresses zero slice warning.
+ */
+static void scx_ops_bypass(bool bypass)
+{
+ int depth, cpu;
+
+ if (bypass) {
+ depth = atomic_inc_return(&scx_ops_bypass_depth);
+ WARN_ON_ONCE(depth <= 0);
+ if (depth != 1)
+ return;
+ } else {
+ depth = atomic_dec_return(&scx_ops_bypass_depth);
+ WARN_ON_ONCE(depth < 0);
+ if (depth != 0)
+ return;
+ }
+
+ mutex_lock(&scx_ops_enable_mutex);
+ if (!scx_enabled())
+ goto out_unlock;
+
+ /*
+ * No task property is changing. We just need to make sure all currently
+ * queued tasks are re-queued according to the new scx_ops_bypassing()
+ * state. As an optimization, walk each rq's runnable_list instead of
+ * the scx_tasks list.
+ *
+ * This function can't trust the scheduler and thus can't use
+ * cpus_read_lock(). Walk all possible CPUs instead of online.
+ */
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
+ struct task_struct *p, *n;
+
+ rq_lock_irqsave(rq, &rf);
+
+ /*
+ * The use of list_for_each_entry_safe_reverse() is required
+ * because each task is going to be removed from and added back
+ * to the runnable_list during iteration. Because they're added
+ * to the tail of the list, safe reverse iteration can still
+ * visit all nodes.
+ */
+ list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
+ scx.runnable_node) {
+ struct sched_enq_and_set_ctx ctx;
+
+ /* cycling deq/enq is enough, see the function comment */
+ sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
+ sched_enq_and_set_task(&ctx);
+ }
+
+ rq_unlock_irqrestore(rq, &rf);
+ }
+
+out_unlock:
+ mutex_unlock(&scx_ops_enable_mutex);
+}
+
+static void free_exit_info(struct scx_exit_info *ei)
+{
+ kfree(ei->msg);
+ kfree(ei->bt);
+ kfree(ei);
+}
+
+static struct scx_exit_info *alloc_exit_info(void)
+{
+ struct scx_exit_info *ei;
+
+ ei = kzalloc(sizeof(*ei), GFP_KERNEL);
+ if (!ei)
+ return NULL;
+
+ ei->bt = kcalloc(sizeof(ei->bt[0]), SCX_EXIT_BT_LEN, GFP_KERNEL);
+ ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
+
+ if (!ei->bt || !ei->msg) {
+ free_exit_info(ei);
+ return NULL;
+ }
+
+ return ei;
+}
+
+static const char *scx_exit_reason(enum scx_exit_kind kind)
+{
+ switch (kind) {
+ case SCX_EXIT_UNREG:
+ return "Scheduler unregistered from user space";
+ case SCX_EXIT_UNREG_BPF:
+ return "Scheduler unregistered from BPF";
+ case SCX_EXIT_UNREG_KERN:
+ return "Scheduler unregistered from the main kernel";
+ case SCX_EXIT_ERROR:
+ return "runtime error";
+ case SCX_EXIT_ERROR_BPF:
+ return "scx_bpf_error";
+ default:
+ return "<UNKNOWN>";
+ }
+}
+
+static void scx_ops_disable_workfn(struct kthread_work *work)
+{
+ struct scx_exit_info *ei = scx_exit_info;
+ struct scx_task_iter sti;
+ struct task_struct *p;
+ struct rhashtable_iter rht_iter;
+ struct scx_dispatch_q *dsq;
+ int i, kind;
+
+ kind = atomic_read(&scx_exit_kind);
+ while (true) {
+ /*
+ * NONE indicates that a new scx_ops has been registered since
+ * disable was scheduled - don't kill the new ops. DONE
+ * indicates that the ops has already been disabled.
+ */
+ if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)
+ return;
+ if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE))
+ break;
+ }
+ ei->kind = kind;
+ ei->reason = scx_exit_reason(ei->kind);
+
+ /* guarantee forward progress by bypassing scx_ops */
+ scx_ops_bypass(true);
+
+ switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) {
+ case SCX_OPS_DISABLING:
+ WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
+ break;
+ case SCX_OPS_DISABLED:
+ pr_warn("sched_ext: ops error detected without ops (%s)\n",
+ scx_exit_info->msg);
+ WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
+ SCX_OPS_DISABLING);
+ goto done;
+ default:
+ break;
+ }
+
+ /*
+ * Here, every runnable task is guaranteed to make forward progress and
+ * we can safely use blocking synchronization constructs. Actually
+ * disable ops.
+ */
+ mutex_lock(&scx_ops_enable_mutex);
+
+ static_branch_disable(&__scx_switched_all);
+ WRITE_ONCE(scx_switching_all, false);
+
+ /*
+ * Avoid racing against fork. See scx_ops_enable() for explanation on
+ * the locking order.
+ */
+ percpu_down_write(&scx_fork_rwsem);
+ cpus_read_lock();
+
+ spin_lock_irq(&scx_tasks_lock);
+ scx_task_iter_init(&sti);
+ while ((p = scx_task_iter_next_filtered_locked(&sti))) {
+ const struct sched_class *old_class = p->sched_class;
+ struct sched_enq_and_set_ctx ctx;
+
+ sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
+
+ p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL);
+ __setscheduler_prio(p, p->prio);
+ check_class_changing(task_rq(p), p, old_class);
+
+ sched_enq_and_set_task(&ctx);
+
+ check_class_changed(task_rq(p), p, old_class, p->prio);
+ scx_ops_exit_task(p);
+ }
+ scx_task_iter_exit(&sti);
+ spin_unlock_irq(&scx_tasks_lock);
+
+ /* no task is on scx, turn off all the switches and flush in-progress calls */
+ static_branch_disable_cpuslocked(&__scx_ops_enabled);
+ for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++)
+ static_branch_disable_cpuslocked(&scx_has_op[i]);
+ static_branch_disable_cpuslocked(&scx_ops_enq_last);
+ static_branch_disable_cpuslocked(&scx_ops_enq_exiting);
+ static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
+ synchronize_rcu();
+
+ cpus_read_unlock();
+ percpu_up_write(&scx_fork_rwsem);
+
+ if (ei->kind >= SCX_EXIT_ERROR) {
+ printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name);
+
+ if (ei->msg[0] == '\0')
+ printk(KERN_ERR "sched_ext: %s\n", ei->reason);
+ else
+ printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg);
+
+ stack_trace_print(ei->bt, ei->bt_len, 2);
+ }
+
+ if (scx_ops.exit)
+ SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei);
+
+ /*
+ * Delete the kobject from the hierarchy eagerly in addition to just
+ * dropping a reference. Otherwise, if the object is deleted
+ * asynchronously, sysfs could observe an object of the same name still
+ * in the hierarchy when another scheduler is loaded.
+ */
+ kobject_del(scx_root_kobj);
+ kobject_put(scx_root_kobj);
+ scx_root_kobj = NULL;
+
+ memset(&scx_ops, 0, sizeof(scx_ops));
+
+ rhashtable_walk_enter(&dsq_hash, &rht_iter);
+ do {
+ rhashtable_walk_start(&rht_iter);
+
+ while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
+ destroy_dsq(dsq->id);
+
+ rhashtable_walk_stop(&rht_iter);
+ } while (dsq == ERR_PTR(-EAGAIN));
+ rhashtable_walk_exit(&rht_iter);
+
+ free_percpu(scx_dsp_buf);
+ scx_dsp_buf = NULL;
+ scx_dsp_max_batch = 0;
+
+ free_exit_info(scx_exit_info);
+ scx_exit_info = NULL;
+
+ mutex_unlock(&scx_ops_enable_mutex);
+
+ WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) !=
+ SCX_OPS_DISABLING);
+done:
+ scx_ops_bypass(false);
+}
+
+static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn);
+
+static void schedule_scx_ops_disable_work(void)
+{
+ struct kthread_worker *helper = READ_ONCE(scx_ops_helper);
+
+ /*
+ * We may be called spuriously before the first bpf_sched_ext_reg(). If
+ * scx_ops_helper isn't set up yet, there's nothing to do.
+ */
+ if (helper)
+ kthread_queue_work(helper, &scx_ops_disable_work);
+}
+
+static void scx_ops_disable(enum scx_exit_kind kind)
+{
+ int none = SCX_EXIT_NONE;
+
+ if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
+ kind = SCX_EXIT_ERROR;
+
+ atomic_try_cmpxchg(&scx_exit_kind, &none, kind);
+
+ schedule_scx_ops_disable_work();
+}
+
+static void scx_ops_error_irq_workfn(struct irq_work *irq_work)
+{
+ schedule_scx_ops_disable_work();
+}
+
+static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn);
+
+static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind,
+ s64 exit_code,
+ const char *fmt, ...)
+{
+ struct scx_exit_info *ei = scx_exit_info;
+ int none = SCX_EXIT_NONE;
+ va_list args;
+
+ if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind))
+ return;
+
+ ei->exit_code = exit_code;
+
+ if (kind >= SCX_EXIT_ERROR)
+ ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
+
+ va_start(args, fmt);
+ vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
+ va_end(args);
+
+ irq_work_queue(&scx_ops_error_irq_work);
+}
+
+static struct kthread_worker *scx_create_rt_helper(const char *name)
+{
+ struct kthread_worker *helper;
+
+ helper = kthread_create_worker(0, name);
+ if (helper)
+ sched_set_fifo(helper->task);
+ return helper;
+}
+
+static int validate_ops(const struct sched_ext_ops *ops)
+{
+ /*
+ * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
+ * ops.enqueue() callback isn't implemented.
+ */
+ if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
+ scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int scx_ops_enable(struct sched_ext_ops *ops)
+{
+ struct scx_task_iter sti;
+ struct task_struct *p;
+ int i, ret;
+
+ mutex_lock(&scx_ops_enable_mutex);
+
+ if (!scx_ops_helper) {
+ WRITE_ONCE(scx_ops_helper,
+ scx_create_rt_helper("sched_ext_ops_helper"));
+ if (!scx_ops_helper) {
+ ret = -ENOMEM;
+ goto err_unlock;
+ }
+ }
+
+ if (scx_ops_enable_state() != SCX_OPS_DISABLED) {
+ ret = -EBUSY;
+ goto err_unlock;
+ }
+
+ scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL);
+ if (!scx_root_kobj) {
+ ret = -ENOMEM;
+ goto err_unlock;
+ }
+
+ scx_root_kobj->kset = scx_kset;
+ ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root");
+ if (ret < 0)
+ goto err;
+
+ scx_exit_info = alloc_exit_info();
+ if (!scx_exit_info) {
+ ret = -ENOMEM;
+ goto err_del;
+ }
+
+ /*
+ * Set scx_ops, transition to PREPPING and clear exit info to arm the
+ * disable path. Failure triggers full disabling from here on.
+ */
+ scx_ops = *ops;
+
+ WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) !=
+ SCX_OPS_DISABLED);
+
+ atomic_set(&scx_exit_kind, SCX_EXIT_NONE);
+ scx_warned_zero_slice = false;
+
+ /*
+ * Keep CPUs stable during enable so that the BPF scheduler can track
+ * online CPUs by watching ->on/offline_cpu() after ->init().
+ */
+ cpus_read_lock();
+
+ if (scx_ops.init) {
+ ret = SCX_CALL_OP_RET(SCX_KF_SLEEPABLE, init);
+ if (ret) {
+ ret = ops_sanitize_err("init", ret);
+ goto err_disable_unlock_cpus;
+ }
+ }
+
+ cpus_read_unlock();
+
+ ret = validate_ops(ops);
+ if (ret)
+ goto err_disable;
+
+ WARN_ON_ONCE(scx_dsp_buf);
+ scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
+ scx_dsp_buf = __alloc_percpu(sizeof(scx_dsp_buf[0]) * scx_dsp_max_batch,
+ __alignof__(scx_dsp_buf[0]));
+ if (!scx_dsp_buf) {
+ ret = -ENOMEM;
+ goto err_disable;
+ }
+
+ /*
+ * Lock out forks before opening the floodgate so that they don't wander
+ * into the operations prematurely.
+ *
+ * We don't need to keep the CPUs stable but grab cpus_read_lock() to
+ * ease future locking changes for cgroup suport.
+ *
+ * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the
+ * following dependency chain:
+ *
+ * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock
+ */
+ percpu_down_write(&scx_fork_rwsem);
+ cpus_read_lock();
+
+ for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
+ if (((void (**)(void))ops)[i])
+ static_branch_enable_cpuslocked(&scx_has_op[i]);
+
+ if (ops->flags & SCX_OPS_ENQ_LAST)
+ static_branch_enable_cpuslocked(&scx_ops_enq_last);
+
+ if (ops->flags & SCX_OPS_ENQ_EXITING)
+ static_branch_enable_cpuslocked(&scx_ops_enq_exiting);
+
+ if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) {
+ reset_idle_masks();
+ static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
+ } else {
+ static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
+ }
+
+ static_branch_enable_cpuslocked(&__scx_ops_enabled);
+
+ /*
+ * Enable ops for every task. Fork is excluded by scx_fork_rwsem
+ * preventing new tasks from being added. No need to exclude tasks
+ * leaving as sched_ext_free() can handle both prepped and enabled
+ * tasks. Prep all tasks first and then enable them with preemption
+ * disabled.
+ */
+ spin_lock_irq(&scx_tasks_lock);
+
+ scx_task_iter_init(&sti);
+ while ((p = scx_task_iter_next_filtered(&sti))) {
+ get_task_struct(p);
+ spin_unlock_irq(&scx_tasks_lock);
+
+ ret = scx_ops_init_task(p, task_group(p), false);
+ if (ret) {
+ put_task_struct(p);
+ spin_lock_irq(&scx_tasks_lock);
+ scx_task_iter_exit(&sti);
+ spin_unlock_irq(&scx_tasks_lock);
+ pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n",
+ ret, p->comm, p->pid);
+ goto err_disable_unlock_all;
+ }
+
+ put_task_struct(p);
+ spin_lock_irq(&scx_tasks_lock);
+ }
+ scx_task_iter_exit(&sti);
+
+ /*
+ * All tasks are prepped but are still ops-disabled. Ensure that
+ * %current can't be scheduled out and switch everyone.
+ * preempt_disable() is necessary because we can't guarantee that
+ * %current won't be starved if scheduled out while switching.
+ */
+ preempt_disable();
+
+ /*
+ * From here on, the disable path must assume that tasks have ops
+ * enabled and need to be recovered.
+ *
+ * Transition to ENABLING fails iff the BPF scheduler has already
+ * triggered scx_bpf_error(). Returning an error code here would lose
+ * the recorded error information. Exit indicating success so that the
+ * error is notified through ops.exit() with all the details.
+ */
+ if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) {
+ preempt_enable();
+ spin_unlock_irq(&scx_tasks_lock);
+ WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
+ ret = 0;
+ goto err_disable_unlock_all;
+ }
+
+ /*
+ * We're fully committed and can't fail. The PREPPED -> ENABLED
+ * transitions here are synchronized against sched_ext_free() through
+ * scx_tasks_lock.
+ */
+ WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
+
+ scx_task_iter_init(&sti);
+ while ((p = scx_task_iter_next_filtered_locked(&sti))) {
+ const struct sched_class *old_class = p->sched_class;
+ struct sched_enq_and_set_ctx ctx;
+
+ sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
+
+ scx_set_task_state(p, SCX_TASK_READY);
+ __setscheduler_prio(p, p->prio);
+ check_class_changing(task_rq(p), p, old_class);
+
+ sched_enq_and_set_task(&ctx);
+
+ check_class_changed(task_rq(p), p, old_class, p->prio);
+ }
+ scx_task_iter_exit(&sti);
+
+ spin_unlock_irq(&scx_tasks_lock);
+ preempt_enable();
+ cpus_read_unlock();
+ percpu_up_write(&scx_fork_rwsem);
+
+ /* see above ENABLING transition for the explanation on exiting with 0 */
+ if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) {
+ WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE);
+ ret = 0;
+ goto err_disable;
+ }
+
+ if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
+ static_branch_enable(&__scx_switched_all);
+
+ kobject_uevent(scx_root_kobj, KOBJ_ADD);
+ mutex_unlock(&scx_ops_enable_mutex);
+
+ return 0;
+
+err_del:
+ kobject_del(scx_root_kobj);
+err:
+ kobject_put(scx_root_kobj);
+ scx_root_kobj = NULL;
+ if (scx_exit_info) {
+ free_exit_info(scx_exit_info);
+ scx_exit_info = NULL;
+ }
+err_unlock:
+ mutex_unlock(&scx_ops_enable_mutex);
+ return ret;
+
+err_disable_unlock_all:
+ percpu_up_write(&scx_fork_rwsem);
+err_disable_unlock_cpus:
+ cpus_read_unlock();
+err_disable:
+ mutex_unlock(&scx_ops_enable_mutex);
+ /* must be fully disabled before returning */
+ scx_ops_disable(SCX_EXIT_ERROR);
+ kthread_flush_work(&scx_ops_disable_work);
+ return ret;
+}
+
+
+/********************************************************************************
+ * bpf_struct_ops plumbing.
+ */
+#include <linux/bpf_verifier.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+
+extern struct btf *btf_vmlinux;
+static const struct btf_type *task_struct_type;
+static u32 task_struct_type_id;
+
+/* Make the 2nd argument of .dispatch a pointer that can be NULL. */
+static bool promote_dispatch_2nd_arg(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ struct btf *btf = bpf_get_btf_vmlinux();
+ const struct bpf_struct_ops_desc *st_ops_desc;
+ const struct btf_member *member;
+ const struct btf_type *t;
+ u32 btf_id, member_idx;
+ const char *mname;
+
+ /* btf_id should be the type id of struct sched_ext_ops */
+ btf_id = prog->aux->attach_btf_id;
+ st_ops_desc = bpf_struct_ops_find(btf, btf_id);
+ if (!st_ops_desc)
+ return false;
+
+ /* BTF type of struct sched_ext_ops */
+ t = st_ops_desc->type;
+
+ member_idx = prog->expected_attach_type;
+ if (member_idx >= btf_type_vlen(t))
+ return false;
+
+ /*
+ * Get the member name of this struct_ops program, which corresponds to
+ * a field in struct sched_ext_ops. For example, the member name of the
+ * dispatch struct_ops program (callback) is "dispatch".
+ */
+ member = &btf_type_member(t)[member_idx];
+ mname = btf_name_by_offset(btf_vmlinux, member->name_off);
+
+ /*
+ * Check if it is the second argument of the function pointer at
+ * "dispatch" in struct sched_ext_ops. The arguments of struct_ops
+ * operators are sequential and 64-bit, so the second argument is at
+ * offset sizeof(__u64).
+ */
+ if (strcmp(mname, "dispatch") == 0 &&
+ off == sizeof(__u64)) {
+ /*
+ * The value is a pointer to a type (struct task_struct) given
+ * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED),
+ * however, can be a NULL (PTR_MAYBE_NULL). The BPF program
+ * should check the pointer to make sure it is not NULL before
+ * using it, or the verifier will reject the program.
+ *
+ * Longer term, this is something that should be addressed by
+ * BTF, and be fully contained within the verifier.
+ */
+ info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED;
+ info->btf = btf_vmlinux;
+ info->btf_id = task_struct_type_id;
+
+ return true;
+ }
+
+ return false;
+}
+
+static bool bpf_scx_is_valid_access(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ if (type != BPF_READ)
+ return false;
+ if (promote_dispatch_2nd_arg(off, size, type, prog, info))
+ return true;
+ if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
+ return false;
+ if (off % size != 0)
+ return false;
+
+ return btf_ctx_access(off, size, type, prog, info);
+}
+
+static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
+ const struct bpf_reg_state *reg, int off,
+ int size)
+{
+ const struct btf_type *t;
+
+ t = btf_type_by_id(reg->btf, reg->btf_id);
+ if (t == task_struct_type) {
+ if (off >= offsetof(struct task_struct, scx.slice) &&
+ off + size <= offsetofend(struct task_struct, scx.slice))
+ return SCALAR_VALUE;
+ }
+
+ return -EACCES;
+}
+
+static const struct bpf_func_proto *
+bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ switch (func_id) {
+ case BPF_FUNC_task_storage_get:
+ return &bpf_task_storage_get_proto;
+ case BPF_FUNC_task_storage_delete:
+ return &bpf_task_storage_delete_proto;
+ default:
+ return bpf_base_func_proto(func_id, prog);
+ }
+}
+
+static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
+ .get_func_proto = bpf_scx_get_func_proto,
+ .is_valid_access = bpf_scx_is_valid_access,
+ .btf_struct_access = bpf_scx_btf_struct_access,
+};
+
+static int bpf_scx_init_member(const struct btf_type *t,
+ const struct btf_member *member,
+ void *kdata, const void *udata)
+{
+ const struct sched_ext_ops *uops = udata;
+ struct sched_ext_ops *ops = kdata;
+ u32 moff = __btf_member_bit_offset(t, member) / 8;
+ int ret;
+
+ switch (moff) {
+ case offsetof(struct sched_ext_ops, dispatch_max_batch):
+ if (*(u32 *)(udata + moff) > INT_MAX)
+ return -E2BIG;
+ ops->dispatch_max_batch = *(u32 *)(udata + moff);
+ return 1;
+ case offsetof(struct sched_ext_ops, flags):
+ if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
+ return -EINVAL;
+ ops->flags = *(u64 *)(udata + moff);
+ return 1;
+ case offsetof(struct sched_ext_ops, name):
+ ret = bpf_obj_name_cpy(ops->name, uops->name,
+ sizeof(ops->name));
+ if (ret < 0)
+ return ret;
+ if (ret == 0)
+ return -EINVAL;
+ return 1;
+ }
+
+ return 0;
+}
+
+static int bpf_scx_check_member(const struct btf_type *t,
+ const struct btf_member *member,
+ const struct bpf_prog *prog)
+{
+ u32 moff = __btf_member_bit_offset(t, member) / 8;
+
+ switch (moff) {
+ case offsetof(struct sched_ext_ops, init_task):
+ case offsetof(struct sched_ext_ops, init):
+ case offsetof(struct sched_ext_ops, exit):
+ break;
+ default:
+ if (prog->sleepable)
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int bpf_scx_reg(void *kdata)
+{
+ return scx_ops_enable(kdata);
+}
+
+static void bpf_scx_unreg(void *kdata)
+{
+ scx_ops_disable(SCX_EXIT_UNREG);
+ kthread_flush_work(&scx_ops_disable_work);
+}
+
+static int bpf_scx_init(struct btf *btf)
+{
+ u32 type_id;
+
+ type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT);
+ if (type_id < 0)
+ return -EINVAL;
+ task_struct_type = btf_type_by_id(btf, type_id);
+ task_struct_type_id = type_id;
+
+ return 0;
+}
+
+static int bpf_scx_update(void *kdata, void *old_kdata)
+{
+ /*
+ * sched_ext does not support updating the actively-loaded BPF
+ * scheduler, as registering a BPF scheduler can always fail if the
+ * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
+ * etc. Similarly, we can always race with unregistration happening
+ * elsewhere, such as with sysrq.
+ */
+ return -EOPNOTSUPP;
+}
+
+static int bpf_scx_validate(void *kdata)
+{
+ return 0;
+}
+
+static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
+static void enqueue_stub(struct task_struct *p, u64 enq_flags) {}
+static void dequeue_stub(struct task_struct *p, u64 enq_flags) {}
+static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {}
+static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; }
+static void set_weight_stub(struct task_struct *p, u32 weight) {}
+static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {}
+static void update_idle_stub(s32 cpu, bool idle) {}
+static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
+static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {}
+static void enable_stub(struct task_struct *p) {}
+static void disable_stub(struct task_struct *p) {}
+static s32 init_stub(void) { return -EINVAL; }
+static void exit_stub(struct scx_exit_info *info) {}
+
+static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
+ .select_cpu = select_cpu_stub,
+ .enqueue = enqueue_stub,
+ .dequeue = dequeue_stub,
+ .dispatch = dispatch_stub,
+ .yield = yield_stub,
+ .set_weight = set_weight_stub,
+ .set_cpumask = set_cpumask_stub,
+ .update_idle = update_idle_stub,
+ .init_task = init_task_stub,
+ .exit_task = exit_task_stub,
+ .enable = enable_stub,
+ .disable = disable_stub,
+ .init = init_stub,
+ .exit = exit_stub,
+};
+
+static struct bpf_struct_ops bpf_sched_ext_ops = {
+ .verifier_ops = &bpf_scx_verifier_ops,
+ .reg = bpf_scx_reg,
+ .unreg = bpf_scx_unreg,
+ .check_member = bpf_scx_check_member,
+ .init_member = bpf_scx_init_member,
+ .init = bpf_scx_init,
+ .update = bpf_scx_update,
+ .validate = bpf_scx_validate,
+ .name = "sched_ext_ops",
+ .owner = THIS_MODULE,
+ .cfi_stubs = &__bpf_ops_sched_ext_ops
+};
+
+
+/********************************************************************************
+ * System integration and init.
+ */
+
+void __init init_sched_ext_class(void)
+{
+ s32 cpu, v;
+
+ /*
+ * The following is to prevent the compiler from optimizing out the enum
+ * definitions so that BPF scheduler implementations can use them
+ * through the generated vmlinux.h.
+ */
+ WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP);
+
+ BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params));
+ init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL);
+#ifdef CONFIG_SMP
+ BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL));
+ BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL));
+#endif
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+
+ init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
+ INIT_LIST_HEAD(&rq->scx.runnable_list);
+ }
+}
+
+
+/********************************************************************************
+ * Helpers that can be called from the BPF scheduler.
+ */
+#include <linux/btf_ids.h>
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_create_dsq - Create a custom DSQ
+ * @dsq_id: DSQ to create
+ * @node: NUMA node to allocate from
+ *
+ * Create a custom DSQ identified by @dsq_id. Can be called from ops.init() and
+ * ops.init_task().
+ */
+__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
+{
+ if (!scx_kf_allowed(SCX_KF_SLEEPABLE))
+ return -EINVAL;
+
+ if (unlikely(node >= (int)nr_node_ids ||
+ (node < 0 && node != NUMA_NO_NODE)))
+ return -EINVAL;
+ return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node));
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_sleepable)
+BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
+BTF_KFUNCS_END(scx_kfunc_ids_sleepable)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_sleepable,
+};
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
+ * @p: task_struct to select a CPU for
+ * @prev_cpu: CPU @p was on previously
+ * @wake_flags: %SCX_WAKE_* flags
+ * @is_idle: out parameter indicating whether the returned CPU is idle
+ *
+ * Can only be called from ops.select_cpu() if the built-in CPU selection is
+ * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
+ * @p, @prev_cpu and @wake_flags match ops.select_cpu().
+ *
+ * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
+ * currently idle and thus a good candidate for direct dispatching.
+ */
+__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
+ u64 wake_flags, bool *is_idle)
+{
+ if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) {
+ *is_idle = false;
+ return prev_cpu;
+ }
+#ifdef CONFIG_SMP
+ return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
+#else
+ *is_idle = false;
+ return prev_cpu;
+#endif
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
+BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
+BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_select_cpu,
+};
+
+static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags)
+{
+ if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
+ return false;
+
+ lockdep_assert_irqs_disabled();
+
+ if (unlikely(!p)) {
+ scx_ops_error("called with NULL task");
+ return false;
+ }
+
+ if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
+ scx_ops_error("invalid enq_flags 0x%llx", enq_flags);
+ return false;
+ }
+
+ return true;
+}
+
+static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags)
+{
+ struct task_struct *ddsp_task;
+ int idx;
+
+ ddsp_task = __this_cpu_read(direct_dispatch_task);
+ if (ddsp_task) {
+ mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags);
+ return;
+ }
+
+ idx = __this_cpu_read(scx_dsp_ctx.buf_cursor);
+ if (unlikely(idx >= scx_dsp_max_batch)) {
+ scx_ops_error("dispatch buffer overflow");
+ return;
+ }
+
+ this_cpu_ptr(scx_dsp_buf)[idx] = (struct scx_dsp_buf_ent){
+ .task = p,
+ .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
+ .dsq_id = dsq_id,
+ .enq_flags = enq_flags,
+ };
+ __this_cpu_inc(scx_dsp_ctx.buf_cursor);
+}
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ
+ * @p: task_struct to dispatch
+ * @dsq_id: DSQ to dispatch to
+ * @slice: duration @p can run for in nsecs
+ * @enq_flags: SCX_ENQ_*
+ *
+ * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe
+ * to call this function spuriously. Can be called from ops.enqueue(),
+ * ops.select_cpu(), and ops.dispatch().
+ *
+ * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
+ * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be
+ * used to target the local DSQ of a CPU other than the enqueueing one. Use
+ * ops.select_cpu() to be on the target CPU in the first place.
+ *
+ * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
+ * will be directly dispatched to the corresponding dispatch queue after
+ * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be
+ * dispatched to the local DSQ of the CPU returned by ops.select_cpu().
+ * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
+ * task is dispatched.
+ *
+ * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
+ * and this function can be called upto ops.dispatch_max_batch times to dispatch
+ * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
+ * remaining slots. scx_bpf_consume() flushes the batch and resets the counter.
+ *
+ * This function doesn't have any locking restrictions and may be called under
+ * BPF locks (in the future when BPF introduces more flexible locking).
+ *
+ * @p is allowed to run for @slice. The scheduling path is triggered on slice
+ * exhaustion. If zero, the current residual slice is maintained.
+ */
+__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice,
+ u64 enq_flags)
+{
+ if (!scx_dispatch_preamble(p, enq_flags))
+ return;
+
+ if (slice)
+ p->scx.slice = slice;
+ else
+ p->scx.slice = p->scx.slice ?: 1;
+
+ scx_dispatch_commit(p, dsq_id, enq_flags);
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
+BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU)
+BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_enqueue_dispatch,
+};
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
+ *
+ * Can only be called from ops.dispatch().
+ */
+__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
+{
+ if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ return 0;
+
+ return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx.buf_cursor);
+}
+
+/**
+ * scx_bpf_dispatch_cancel - Cancel the latest dispatch
+ *
+ * Cancel the latest dispatch. Can be called multiple times to cancel further
+ * dispatches. Can only be called from ops.dispatch().
+ */
+__bpf_kfunc void scx_bpf_dispatch_cancel(void)
+{
+ struct scx_dsp_ctx *dspc = this_cpu_ptr(&scx_dsp_ctx);
+
+ if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ return;
+
+ if (dspc->buf_cursor > 0)
+ dspc->buf_cursor--;
+ else
+ scx_ops_error("dispatch buffer underflow");
+}
+
+/**
+ * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ
+ * @dsq_id: DSQ to consume
+ *
+ * Consume a task from the non-local DSQ identified by @dsq_id and transfer it
+ * to the current CPU's local DSQ for execution. Can only be called from
+ * ops.dispatch().
+ *
+ * This function flushes the in-flight dispatches from scx_bpf_dispatch() before
+ * trying to consume the specified DSQ. It may also grab rq locks and thus can't
+ * be called under any BPF locks.
+ *
+ * Returns %true if a task has been consumed, %false if there isn't any task to
+ * consume.
+ */
+__bpf_kfunc bool scx_bpf_consume(u64 dsq_id)
+{
+ struct scx_dsp_ctx *dspc = this_cpu_ptr(&scx_dsp_ctx);
+ struct scx_dispatch_q *dsq;
+
+ if (!scx_kf_allowed(SCX_KF_DISPATCH))
+ return false;
+
+ flush_dispatch_buf(dspc->rq, dspc->rf);
+
+ dsq = find_non_local_dsq(dsq_id);
+ if (unlikely(!dsq)) {
+ scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id);
+ return false;
+ }
+
+ if (consume_dispatch_q(dspc->rq, dspc->rf, dsq)) {
+ /*
+ * A successfully consumed task can be dequeued before it starts
+ * running while the CPU is trying to migrate other dispatched
+ * tasks. Bump nr_tasks to tell balance_scx() to retry on empty
+ * local DSQ.
+ */
+ dspc->nr_tasks++;
+ return true;
+ } else {
+ return false;
+ }
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
+BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
+BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
+BTF_ID_FLAGS(func, scx_bpf_consume)
+BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_dispatch,
+};
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_dsq_nr_queued - Return the number of queued tasks
+ * @dsq_id: id of the DSQ
+ *
+ * Return the number of tasks in the DSQ matching @dsq_id. If not found,
+ * -%ENOENT is returned.
+ */
+__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
+{
+ struct scx_dispatch_q *dsq;
+ s32 ret;
+
+ preempt_disable();
+
+ if (dsq_id == SCX_DSQ_LOCAL) {
+ ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
+ goto out;
+ } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
+ s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
+
+ if (ops_cpu_valid(cpu, NULL)) {
+ ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
+ goto out;
+ }
+ } else {
+ dsq = find_non_local_dsq(dsq_id);
+ if (dsq) {
+ ret = READ_ONCE(dsq->nr);
+ goto out;
+ }
+ }
+ ret = -ENOENT;
+out:
+ preempt_enable();
+ return ret;
+}
+
+/**
+ * scx_bpf_destroy_dsq - Destroy a custom DSQ
+ * @dsq_id: DSQ to destroy
+ *
+ * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
+ * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
+ * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
+ * which doesn't exist. Can be called from any online scx_ops operations.
+ */
+__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
+{
+ destroy_dsq(dsq_id);
+}
+
+__bpf_kfunc_end_defs();
+
+struct scx_bpf_error_bstr_bufs {
+ u64 data[MAX_BPRINTF_VARARGS];
+ char msg[SCX_EXIT_MSG_LEN];
+};
+
+static DEFINE_PER_CPU(struct scx_bpf_error_bstr_bufs, scx_bpf_error_bstr_bufs);
+
+static void bpf_exit_bstr_common(enum scx_exit_kind kind, s64 exit_code,
+ char *fmt, unsigned long long *data,
+ u32 data__sz)
+{
+ struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
+ struct scx_bpf_error_bstr_bufs *bufs;
+ unsigned long flags;
+ int ret;
+
+ local_irq_save(flags);
+ bufs = this_cpu_ptr(&scx_bpf_error_bstr_bufs);
+
+ if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
+ (data__sz && !data)) {
+ scx_ops_error("invalid data=%p and data__sz=%u",
+ (void *)data, data__sz);
+ goto out_restore;
+ }
+
+ ret = copy_from_kernel_nofault(bufs->data, data, data__sz);
+ if (ret) {
+ scx_ops_error("failed to read data fields (%d)", ret);
+ goto out_restore;
+ }
+
+ ret = bpf_bprintf_prepare(fmt, UINT_MAX, bufs->data, data__sz / 8,
+ &bprintf_data);
+ if (ret < 0) {
+ scx_ops_error("failed to format prepration (%d)", ret);
+ goto out_restore;
+ }
+
+ ret = bstr_printf(bufs->msg, sizeof(bufs->msg), fmt,
+ bprintf_data.bin_args);
+ bpf_bprintf_cleanup(&bprintf_data);
+ if (ret < 0) {
+ scx_ops_error("scx_ops_error(\"%s\", %p, %u) failed to format",
+ fmt, data, data__sz);
+ goto out_restore;
+ }
+
+ scx_ops_exit_kind(kind, exit_code, "%s", bufs->msg);
+out_restore:
+ local_irq_restore(flags);
+
+}
+
+__bpf_kfunc_start_defs();
+
+/**
+ * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
+ * @exit_code: Exit value to pass to user space via struct scx_exit_info.
+ * @fmt: error message format string
+ * @data: format string parameters packaged using ___bpf_fill() macro
+ * @data__sz: @data len, must end in '__sz' for the verifier
+ *
+ * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
+ * disabling.
+ */
+__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
+ unsigned long long *data, u32 data__sz)
+{
+ bpf_exit_bstr_common(SCX_EXIT_UNREG_BPF, exit_code, fmt, data,
+ data__sz);
+}
+
+/**
+ * scx_bpf_error_bstr - Indicate fatal error
+ * @fmt: error message format string
+ * @data: format string parameters packaged using ___bpf_fill() macro
+ * @data__sz: @data len, must end in '__sz' for the verifier
+ *
+ * Indicate that the BPF scheduler encountered a fatal error and initiate ops
+ * disabling.
+ */
+__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
+ u32 data__sz)
+{
+
+ bpf_exit_bstr_common(SCX_EXIT_ERROR_BPF, 0, fmt, data,
+ data__sz);
+}
+
+/**
+ * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
+ *
+ * All valid CPU IDs in the system are smaller than the returned value.
+ */
+__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
+{
+ return nr_cpu_ids;
+}
+
+/**
+ * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
+{
+ return cpu_possible_mask;
+}
+
+/**
+ * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
+{
+ return cpu_online_mask;
+}
+
+/**
+ * scx_bpf_put_cpumask - Release a possible/online cpumask
+ * @cpumask: cpumask to release
+ */
+__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
+{
+ /*
+ * Empty function body because we aren't actually acquiring or releasing
+ * a reference to a global cpumask, which is read-only in the caller and
+ * is never released. The acquire / release semantics here are just used
+ * to make the cpumask is a trusted pointer in the caller.
+ */
+}
+
+/**
+ * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
+ * per-CPU cpumask.
+ *
+ * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
+{
+ if (!static_branch_likely(&scx_builtin_idle_enabled)) {
+ scx_ops_error("built-in idle tracking is disabled");
+ return cpu_none_mask;
+ }
+
+#ifdef CONFIG_SMP
+ return idle_masks.cpu;
+#else
+ return cpu_none_mask;
+#endif
+}
+
+/**
+ * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
+ * per-physical-core cpumask. Can be used to determine if an entire physical
+ * core is free.
+ *
+ * Returns NULL if idle tracking is not enabled, or running on a UP kernel.
+ */
+__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
+{
+ if (!static_branch_likely(&scx_builtin_idle_enabled)) {
+ scx_ops_error("built-in idle tracking is disabled");
+ return cpu_none_mask;
+ }
+
+#ifdef CONFIG_SMP
+ if (sched_smt_active())
+ return idle_masks.smt;
+ else
+ return idle_masks.cpu;
+#else
+ return cpu_none_mask;
+#endif
+}
+
+/**
+ * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
+ * either the percpu, or SMT idle-tracking cpumask.
+ */
+__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
+{
+ /*
+ * Empty function body because we aren't actually acquiring or releasing
+ * a reference to a global idle cpumask, which is read-only in the
+ * caller and is never released. The acquire / release semantics here
+ * are just used to make the cpumask a trusted pointer in the caller.
+ */
+}
+
+/**
+ * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
+ * @cpu: cpu to test and clear idle for
+ *
+ * Returns %true if @cpu was idle and its idle state was successfully cleared.
+ * %false otherwise.
+ *
+ * Unavailable if ops.update_idle() is implemented and
+ * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
+ */
+__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
+{
+ if (!static_branch_likely(&scx_builtin_idle_enabled)) {
+ scx_ops_error("built-in idle tracking is disabled");
+ return false;
+ }
+
+ if (ops_cpu_valid(cpu, NULL))
+ return test_and_clear_cpu_idle(cpu);
+ else
+ return false;
+}
+
+/**
+ * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
+ * @cpus_allowed: Allowed cpumask
+ * @flags: %SCX_PICK_IDLE_CPU_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
+ * number on success. -%EBUSY if no matching cpu was found.
+ *
+ * Idle CPU tracking may race against CPU scheduling state transitions. For
+ * example, this function may return -%EBUSY as CPUs are transitioning into the
+ * idle state. If the caller then assumes that there will be dispatch events on
+ * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
+ * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
+ * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
+ * event in the near future.
+ *
+ * Unavailable if ops.update_idle() is implemented and
+ * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
+ */
+__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
+ u64 flags)
+{
+ if (!static_branch_likely(&scx_builtin_idle_enabled)) {
+ scx_ops_error("built-in idle tracking is disabled");
+ return -EBUSY;
+ }
+
+ return scx_pick_idle_cpu(cpus_allowed, flags);
+}
+
+/**
+ * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
+ * @cpus_allowed: Allowed cpumask
+ * @flags: %SCX_PICK_IDLE_CPU_* flags
+ *
+ * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
+ * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
+ * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
+ * empty.
+ *
+ * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
+ * set, this function can't tell which CPUs are idle and will always pick any
+ * CPU.
+ */
+__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
+ u64 flags)
+{
+ s32 cpu;
+
+ if (static_branch_likely(&scx_builtin_idle_enabled)) {
+ cpu = scx_pick_idle_cpu(cpus_allowed, flags);
+ if (cpu >= 0)
+ return cpu;
+ }
+
+ cpu = cpumask_any_distribute(cpus_allowed);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+ else
+ return -EBUSY;
+}
+
+/**
+ * scx_bpf_task_running - Is task currently running?
+ * @p: task of interest
+ */
+__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
+{
+ return task_rq(p)->curr == p;
+}
+
+/**
+ * scx_bpf_task_cpu - CPU a task is currently associated with
+ * @p: task of interest
+ */
+__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
+{
+ return task_cpu(p);
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(scx_kfunc_ids_any)
+BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
+BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
+BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
+BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
+BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
+BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
+BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
+BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
+BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
+BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
+BTF_KFUNCS_END(scx_kfunc_ids_any)
+
+static const struct btf_kfunc_id_set scx_kfunc_set_any = {
+ .owner = THIS_MODULE,
+ .set = &scx_kfunc_ids_any,
+};
+
+static int __init scx_init(void)
+{
+ int ret;
+
+ /*
+ * kfunc registration can't be done from init_sched_ext_class() as
+ * register_btf_kfunc_id_set() needs most of the system to be up.
+ *
+ * Some kfuncs are context-sensitive and can only be called from
+ * specific SCX ops. They are grouped into BTF sets accordingly.
+ * Unfortunately, BPF currently doesn't have a way of enforcing such
+ * restrictions. Eventually, the verifier should be able to enforce
+ * them. For now, register them the same and make each kfunc explicitly
+ * check using scx_kf_allowed().
+ */
+ if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
+ &scx_kfunc_set_sleepable)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
+ &scx_kfunc_set_select_cpu)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
+ &scx_kfunc_set_enqueue_dispatch)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
+ &scx_kfunc_set_dispatch)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
+ &scx_kfunc_set_any)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
+ &scx_kfunc_set_any)) ||
+ (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
+ &scx_kfunc_set_any))) {
+ pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
+ return ret;
+ }
+
+ ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
+ if (ret) {
+ pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
+ return ret;
+ }
+
+ scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
+ if (!scx_kset) {
+ pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
+ return -ENOMEM;
+ }
+
+ ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
+ if (ret < 0) {
+ pr_err("sched_ext: Failed to add global attributes\n");
+ return ret;
+ }
+
+ return 0;
+}
+__initcall(scx_init);
@@ -1,15 +1,85 @@
/* SPDX-License-Identifier: GPL-2.0 */
-
+/*
+ * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
+ * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
+ * Copyright (c) 2022 David Vernet <dvernet@meta.com>
+ */
#ifdef CONFIG_SCHED_CLASS_EXT
-#error "NOT IMPLEMENTED YET"
+
+struct sched_enq_and_set_ctx {
+ struct task_struct *p;
+ int queue_flags;
+ bool queued;
+ bool running;
+};
+
+void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
+ struct sched_enq_and_set_ctx *ctx);
+void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
+
+extern const struct sched_class ext_sched_class;
+
+DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);
+DECLARE_STATIC_KEY_FALSE(__scx_switched_all);
+#define scx_enabled() static_branch_unlikely(&__scx_ops_enabled)
+#define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
+
+static inline bool task_on_scx(const struct task_struct *p)
+{
+ return scx_enabled() && p->sched_class == &ext_sched_class;
+}
+
+void init_scx_entity(struct sched_ext_entity *scx);
+void scx_pre_fork(struct task_struct *p);
+int scx_fork(struct task_struct *p);
+void scx_post_fork(struct task_struct *p);
+void scx_cancel_fork(struct task_struct *p);
+bool task_should_scx(struct task_struct *p);
+void init_sched_ext_class(void);
+
+static inline u32 scx_cpuperf_target(s32 cpu)
+{
+ /* for now, peg cpus at max performance while enabled */
+ if (scx_enabled())
+ return SCHED_CAPACITY_SCALE;
+ else
+ return 0;
+}
+
+static inline const struct sched_class *next_active_class(const struct sched_class *class)
+{
+ class++;
+ if (scx_switched_all() && class == &fair_sched_class)
+ class++;
+ if (!scx_enabled() && class == &ext_sched_class)
+ class++;
+ return class;
+}
+
+#define for_active_class_range(class, _from, _to) \
+ for (class = (_from); class != (_to); class = next_active_class(class))
+
+#define for_each_active_class(class) \
+ for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
+
+/*
+ * SCX requires a balance() call before every pick_next_task() call including
+ * when waking up from idle.
+ */
+#define for_balance_class_range(class, prev_class, end_class) \
+ for_active_class_range(class, (prev_class) > &ext_sched_class ? \
+ &ext_sched_class : (prev_class), (end_class))
+
#else /* CONFIG_SCHED_CLASS_EXT */
#define scx_enabled() false
+#define scx_switched_all() false
static inline void scx_pre_fork(struct task_struct *p) {}
static inline int scx_fork(struct task_struct *p) { return 0; }
static inline void scx_post_fork(struct task_struct *p) {}
static inline void scx_cancel_fork(struct task_struct *p) {}
+static inline bool task_on_scx(const struct task_struct *p) { return false; }
static inline void init_sched_ext_class(void) {}
static inline u32 scx_cpuperf_target(s32 cpu) { return 0; }
@@ -19,7 +89,13 @@ static inline u32 scx_cpuperf_target(s32 cpu) { return 0; }
#endif /* CONFIG_SCHED_CLASS_EXT */
#if defined(CONFIG_SCHED_CLASS_EXT) && defined(CONFIG_SMP)
-#error "NOT IMPLEMENTED YET"
+void __scx_update_idle(struct rq *rq, bool idle);
+
+static inline void scx_update_idle(struct rq *rq, bool idle)
+{
+ if (scx_enabled())
+ __scx_update_idle(rq, idle);
+}
#else
static inline void scx_update_idle(struct rq *rq, bool idle) {}
#endif
@@ -174,6 +174,10 @@ static inline int idle_policy(int policy)
static inline int normal_policy(int policy)
{
+#ifdef CONFIG_SCHED_CLASS_EXT
+ if (policy == SCHED_EXT)
+ return true;
+#endif
return policy == SCHED_NORMAL;
}
@@ -704,6 +708,16 @@ struct cfs_rq {
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
+#ifdef CONFIG_SCHED_CLASS_EXT
+struct scx_rq {
+ struct scx_dispatch_q local_dsq;
+ struct list_head runnable_list; /* runnable tasks on this rq */
+ unsigned long ops_qseq;
+ u64 extra_enq_flags; /* see move_task_to_local_dsq() */
+ u32 nr_running;
+};
+#endif /* CONFIG_SCHED_CLASS_EXT */
+
static inline int rt_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
@@ -1044,6 +1058,9 @@ struct rq {
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ struct scx_rq scx;
+#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this CPU: */