diff mbox series

[bpf-next,v4,04/10] libbpf: Add BPF_CORE_WRITE_BITFIELD() macro

Message ID d213a6438f7f5db1014f6b41213b71851736d3bc.1701722991.git.dxu@dxuuu.xyz (mailing list archive)
State Superseded
Delegated to: BPF
Headers show
Series Add bpf_xdp_get_xfrm_state() kfunc | expand

Checks

Context Check Description
netdev/series_format success Posting correctly formatted
netdev/tree_selection success Clearly marked for bpf-next, async
netdev/ynl success SINGLE THREAD; Generated files up to date; no warnings/errors; no diff in generated;
netdev/fixes_present success Fixes tag not required for -next series
netdev/header_inline success No static functions without inline keyword in header files
netdev/build_32bit success Errors and warnings before: 8 this patch: 8
netdev/cc_maintainers success CCed 16 of 16 maintainers
netdev/build_clang success Errors and warnings before: 8 this patch: 8
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/deprecated_api success None detected
netdev/check_selftest success No net selftest shell script
netdev/verify_fixes success No Fixes tag
netdev/build_allmodconfig_warn success Errors and warnings before: 8 this patch: 8
netdev/checkpatch fail CHECK: Macro argument 's' may be better as '(s)' to avoid precedence issues ERROR: trailing statements should be on next line
netdev/build_clang_rust success No Rust files in patch. Skipping build
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0
bpf/vmtest-bpf-next-VM_Test-2 success Logs for Validate matrix.py
bpf/vmtest-bpf-next-VM_Test-1 success Logs for ShellCheck
bpf/vmtest-bpf-next-VM_Test-0 success Logs for Lint
bpf/vmtest-bpf-next-VM_Test-3 success Logs for aarch64-gcc / build / build for aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-8 success Logs for aarch64-gcc / veristat
bpf/vmtest-bpf-next-VM_Test-9 success Logs for s390x-gcc / build / build for s390x with gcc
bpf/vmtest-bpf-next-VM_Test-4 success Logs for aarch64-gcc / test (test_maps, false, 360) / test_maps on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-7 success Logs for aarch64-gcc / test (test_verifier, false, 360) / test_verifier on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-14 success Logs for s390x-gcc / veristat
bpf/vmtest-bpf-next-VM_Test-15 success Logs for set-matrix
bpf/vmtest-bpf-next-VM_Test-16 success Logs for x86_64-gcc / build / build for x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-17 success Logs for x86_64-gcc / test (test_maps, false, 360) / test_maps on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-20 success Logs for x86_64-gcc / test (test_progs_no_alu32_parallel, true, 30) / test_progs_no_alu32_parallel on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-22 success Logs for x86_64-gcc / test (test_verifier, false, 360) / test_verifier on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-23 success Logs for x86_64-gcc / veristat / veristat on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-24 success Logs for x86_64-llvm-16 / build / build for x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-29 success Logs for x86_64-llvm-16 / veristat
bpf/vmtest-bpf-next-VM_Test-6 success Logs for aarch64-gcc / test (test_progs_no_alu32, false, 360) / test_progs_no_alu32 on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-5 success Logs for aarch64-gcc / test (test_progs, false, 360) / test_progs on aarch64 with gcc
bpf/vmtest-bpf-next-VM_Test-18 success Logs for x86_64-gcc / test (test_progs, false, 360) / test_progs on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-19 success Logs for x86_64-gcc / test (test_progs_no_alu32, false, 360) / test_progs_no_alu32 on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-21 success Logs for x86_64-gcc / test (test_progs_parallel, true, 30) / test_progs_parallel on x86_64 with gcc
bpf/vmtest-bpf-next-VM_Test-25 success Logs for x86_64-llvm-16 / test (test_maps, false, 360) / test_maps on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-28 success Logs for x86_64-llvm-16 / test (test_verifier, false, 360) / test_verifier on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-26 success Logs for x86_64-llvm-16 / test (test_progs, false, 360) / test_progs on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-27 success Logs for x86_64-llvm-16 / test (test_progs_no_alu32, false, 360) / test_progs_no_alu32 on x86_64 with llvm-16
bpf/vmtest-bpf-next-VM_Test-13 success Logs for s390x-gcc / test (test_verifier, false, 360) / test_verifier on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-12 success Logs for s390x-gcc / test (test_progs_no_alu32, false, 360) / test_progs_no_alu32 on s390x with gcc
bpf/vmtest-bpf-next-PR success PR summary
bpf/vmtest-bpf-next-VM_Test-10 success Logs for s390x-gcc / test (test_maps, false, 360) / test_maps on s390x with gcc
bpf/vmtest-bpf-next-VM_Test-11 success Logs for s390x-gcc / test (test_progs, false, 360) / test_progs on s390x with gcc

Commit Message

Daniel Xu Dec. 4, 2023, 8:56 p.m. UTC
=== Motivation ===

Similar to reading from CO-RE bitfields, we need a CO-RE aware bitfield
writing wrapper to make the verifier happy.

Two alternatives to this approach are:

1. Use the upcoming `preserve_static_offset` [0] attribute to disable
   CO-RE on specific structs.
2. Use broader byte-sized writes to write to bitfields.

(1) is a bit hard to use. It requires specific and not-very-obvious
annotations to bpftool generated vmlinux.h. It's also not generally
available in released LLVM versions yet.

(2) makes the code quite hard to read and write. And especially if
BPF_CORE_READ_BITFIELD() is already being used, it makes more sense to
to have an inverse helper for writing.

=== Implementation details ===

Since the logic is a bit non-obvious, I thought it would be helpful
to explain exactly what's going on.

To start, it helps by explaining what LSHIFT_U64 (lshift) and RSHIFT_U64
(rshift) is designed to mean. Consider the core of the
BPF_CORE_READ_BITFIELD() algorithm:

        val <<= __CORE_RELO(s, field, LSHIFT_U64);
        val = val >> __CORE_RELO(s, field, RSHIFT_U64);

Basically what happens is we lshift to clear the non-relevant (blank)
higher order bits. Then we rshift to bring the relevant bits (bitfield)
down to LSB position (while also clearing blank lower order bits). To
illustrate:

        Start:    ........XXX......
        Lshift:   XXX......00000000
        Rshift:   00000000000000XXX

where `.` means blank bit, `0` means 0 bit, and `X` means bitfield bit.

After the two operations, the bitfield is ready to be interpreted as a
regular integer.

Next, we want to build an alternative (but more helpful) mental model
on lshift and rshift. That is, to consider:

* rshift as the total number of blank bits in the u64
* lshift as number of blank bits left of the bitfield in the u64

Take a moment to consider why that is true by consulting the above
diagram.

With this insight, we can now define the following relationship:

              bitfield
                 _
                | |
        0.....00XXX0...00
        |      |   |    |
        |______|   |    |
         lshift    |    |
                   |____|
              (rshift - lshift)

That is, we know the number of higher order blank bits is just lshift.
And the number of lower order blank bits is (rshift - lshift).

Finally, we can examine the core of the write side algorithm:

        mask = (~0ULL << rshift) >> lshift;              // 1
        val = (val & ~mask) | ((nval << rpad) & mask);   // 2

1. Compute a mask where the set bits are the bitfield bits. The first
   left shift zeros out exactly the number of blank bits, leaving a
   bitfield sized set of 1s. The subsequent right shift inserts the
   correct amount of higher order blank bits.

2. On the left of the `|`, mask out the bitfield bits. This creates
   0s where the new bitfield bits will go. On the right of the `|`,
   bring nval into the correct bit position and mask out any bits
   that fall outside of the bitfield. Finally, by bor'ing the two
   halves, we get the final set of bits to write back.

[0]: https://reviews.llvm.org/D133361
Co-developed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Co-developed-by: Jonathan Lemon <jlemon@aviatrix.com>
Signed-off-by: Jonathan Lemon <jlemon@aviatrix.com>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
---
 tools/lib/bpf/bpf_core_read.h | 32 ++++++++++++++++++++++++++++++++
 1 file changed, 32 insertions(+)

Comments

Andrii Nakryiko Dec. 5, 2023, 4:03 a.m. UTC | #1
On Mon, Dec 4, 2023 at 12:57 PM Daniel Xu <dxu@dxuuu.xyz> wrote:
>
> === Motivation ===
>
> Similar to reading from CO-RE bitfields, we need a CO-RE aware bitfield
> writing wrapper to make the verifier happy.
>
> Two alternatives to this approach are:
>
> 1. Use the upcoming `preserve_static_offset` [0] attribute to disable
>    CO-RE on specific structs.
> 2. Use broader byte-sized writes to write to bitfields.
>
> (1) is a bit hard to use. It requires specific and not-very-obvious
> annotations to bpftool generated vmlinux.h. It's also not generally
> available in released LLVM versions yet.
>
> (2) makes the code quite hard to read and write. And especially if
> BPF_CORE_READ_BITFIELD() is already being used, it makes more sense to
> to have an inverse helper for writing.
>
> === Implementation details ===
>
> Since the logic is a bit non-obvious, I thought it would be helpful
> to explain exactly what's going on.
>
> To start, it helps by explaining what LSHIFT_U64 (lshift) and RSHIFT_U64
> (rshift) is designed to mean. Consider the core of the
> BPF_CORE_READ_BITFIELD() algorithm:
>
>         val <<= __CORE_RELO(s, field, LSHIFT_U64);
>         val = val >> __CORE_RELO(s, field, RSHIFT_U64);
>
> Basically what happens is we lshift to clear the non-relevant (blank)
> higher order bits. Then we rshift to bring the relevant bits (bitfield)
> down to LSB position (while also clearing blank lower order bits). To
> illustrate:
>
>         Start:    ........XXX......
>         Lshift:   XXX......00000000
>         Rshift:   00000000000000XXX
>
> where `.` means blank bit, `0` means 0 bit, and `X` means bitfield bit.
>
> After the two operations, the bitfield is ready to be interpreted as a
> regular integer.
>
> Next, we want to build an alternative (but more helpful) mental model
> on lshift and rshift. That is, to consider:
>
> * rshift as the total number of blank bits in the u64
> * lshift as number of blank bits left of the bitfield in the u64
>
> Take a moment to consider why that is true by consulting the above
> diagram.
>
> With this insight, we can now define the following relationship:
>
>               bitfield
>                  _
>                 | |
>         0.....00XXX0...00
>         |      |   |    |
>         |______|   |    |
>          lshift    |    |
>                    |____|
>               (rshift - lshift)
>
> That is, we know the number of higher order blank bits is just lshift.
> And the number of lower order blank bits is (rshift - lshift).
>
> Finally, we can examine the core of the write side algorithm:
>
>         mask = (~0ULL << rshift) >> lshift;              // 1
>         val = (val & ~mask) | ((nval << rpad) & mask);   // 2
>
> 1. Compute a mask where the set bits are the bitfield bits. The first
>    left shift zeros out exactly the number of blank bits, leaving a
>    bitfield sized set of 1s. The subsequent right shift inserts the
>    correct amount of higher order blank bits.
>
> 2. On the left of the `|`, mask out the bitfield bits. This creates
>    0s where the new bitfield bits will go. On the right of the `|`,
>    bring nval into the correct bit position and mask out any bits
>    that fall outside of the bitfield. Finally, by bor'ing the two
>    halves, we get the final set of bits to write back.
>
> [0]: https://reviews.llvm.org/D133361
> Co-developed-by: Eduard Zingerman <eddyz87@gmail.com>
> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
> Co-developed-by: Jonathan Lemon <jlemon@aviatrix.com>
> Signed-off-by: Jonathan Lemon <jlemon@aviatrix.com>
> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
> ---
>  tools/lib/bpf/bpf_core_read.h | 32 ++++++++++++++++++++++++++++++++
>  1 file changed, 32 insertions(+)
>

LGTM

Acked-by: Andrii Nakryiko <andrii@kernel.org>

> diff --git a/tools/lib/bpf/bpf_core_read.h b/tools/lib/bpf/bpf_core_read.h
> index 1ac57bb7ac55..7325a12692a3 100644
> --- a/tools/lib/bpf/bpf_core_read.h
> +++ b/tools/lib/bpf/bpf_core_read.h
> @@ -111,6 +111,38 @@ enum bpf_enum_value_kind {
>         val;                                                                  \
>  })
>
> +/*
> + * Write to a bitfield, identified by s->field.
> + * This is the inverse of BPF_CORE_WRITE_BITFIELD().
> + */
> +#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({                  \
> +       void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET);       \
> +       unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE);      \
> +       unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64);        \
> +       unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64);        \
> +       unsigned long long mask, val, nval = new_val;                   \
> +       unsigned int rpad = rshift - lshift;                            \
> +                                                                       \
> +       asm volatile("" : "+r"(p));                                     \
> +                                                                       \
> +       switch (byte_size) {                                            \
> +       case 1: val = *(unsigned char *)p; break;                       \
> +       case 2: val = *(unsigned short *)p; break;                      \
> +       case 4: val = *(unsigned int *)p; break;                        \
> +       case 8: val = *(unsigned long long *)p; break;                  \
> +       }                                                               \
> +                                                                       \
> +       mask = (~0ULL << rshift) >> lshift;                             \
> +       val = (val & ~mask) | ((nval << rpad) & mask);                  \
> +                                                                       \
> +       switch (byte_size) {                                            \
> +       case 1: *(unsigned char *)p      = val; break;                  \
> +       case 2: *(unsigned short *)p     = val; break;                  \
> +       case 4: *(unsigned int *)p       = val; break;                  \
> +       case 8: *(unsigned long long *)p = val; break;                  \
> +       }                                                               \
> +})
> +
>  #define ___bpf_field_ref1(field)       (field)
>  #define ___bpf_field_ref2(type, field) (((typeof(type) *)0)->field)
>  #define ___bpf_field_ref(args...)                                          \
> --
> 2.42.1
>
diff mbox series

Patch

diff --git a/tools/lib/bpf/bpf_core_read.h b/tools/lib/bpf/bpf_core_read.h
index 1ac57bb7ac55..7325a12692a3 100644
--- a/tools/lib/bpf/bpf_core_read.h
+++ b/tools/lib/bpf/bpf_core_read.h
@@ -111,6 +111,38 @@  enum bpf_enum_value_kind {
 	val;								      \
 })
 
+/*
+ * Write to a bitfield, identified by s->field.
+ * This is the inverse of BPF_CORE_WRITE_BITFIELD().
+ */
+#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({			\
+	void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET);	\
+	unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE);	\
+	unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64);	\
+	unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64);	\
+	unsigned long long mask, val, nval = new_val;			\
+	unsigned int rpad = rshift - lshift;				\
+									\
+	asm volatile("" : "+r"(p));					\
+									\
+	switch (byte_size) {						\
+	case 1: val = *(unsigned char *)p; break;			\
+	case 2: val = *(unsigned short *)p; break;			\
+	case 4: val = *(unsigned int *)p; break;			\
+	case 8: val = *(unsigned long long *)p; break;			\
+	}								\
+									\
+	mask = (~0ULL << rshift) >> lshift;				\
+	val = (val & ~mask) | ((nval << rpad) & mask);			\
+									\
+	switch (byte_size) {						\
+	case 1: *(unsigned char *)p      = val; break;			\
+	case 2: *(unsigned short *)p     = val; break;			\
+	case 4: *(unsigned int *)p       = val; break;			\
+	case 8: *(unsigned long long *)p = val; break;			\
+	}								\
+})
+
 #define ___bpf_field_ref1(field)	(field)
 #define ___bpf_field_ref2(type, field)	(((typeof(type) *)0)->field)
 #define ___bpf_field_ref(args...)					    \