Message ID | 20191219130921.309264-21-k.jensen@samsung.com (mailing list archive) |
---|---|
State | New, archived |
Headers | show |
Series | nvme: support NVMe v1.3d, SGLs and multiple namespaces | expand |
Hi Klaus, On Thu, 19 Dec 2019 at 13:09, Klaus Jensen <k.jensen@samsung.com> wrote: > > For now, support the Data Block, Segment and Last Segment descriptor > types. > > See NVM Express 1.3d, Section 4.4 ("Scatter Gather List (SGL)"). > > Signed-off-by: Klaus Jensen <klaus.jensen@cnexlabs.com> > Acked-by: Fam Zheng <fam@euphon.net> > --- > block/nvme.c | 18 +- > hw/block/nvme.c | 379 +++++++++++++++++++++++++++++++++++------- > hw/block/trace-events | 3 + > include/block/nvme.h | 62 ++++++- > 4 files changed, 393 insertions(+), 69 deletions(-) > > diff --git a/block/nvme.c b/block/nvme.c > index d41c4bda6e39..521f521054d5 100644 > --- a/block/nvme.c > +++ b/block/nvme.c > @@ -446,7 +446,7 @@ static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) > error_setg(errp, "Cannot map buffer for DMA"); > goto out; > } > - cmd.prp1 = cpu_to_le64(iova); > + cmd.dptr.prp.prp1 = cpu_to_le64(iova); > > if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { > error_setg(errp, "Failed to identify controller"); > @@ -545,7 +545,7 @@ static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) > } > cmd = (NvmeCmd) { > .opcode = NVME_ADM_CMD_CREATE_CQ, > - .prp1 = cpu_to_le64(q->cq.iova), > + .dptr.prp.prp1 = cpu_to_le64(q->cq.iova), > .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), > .cdw11 = cpu_to_le32(0x3), > }; > @@ -556,7 +556,7 @@ static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) > } > cmd = (NvmeCmd) { > .opcode = NVME_ADM_CMD_CREATE_SQ, > - .prp1 = cpu_to_le64(q->sq.iova), > + .dptr.prp.prp1 = cpu_to_le64(q->sq.iova), > .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), > .cdw11 = cpu_to_le32(0x1 | (n << 16)), > }; > @@ -906,16 +906,16 @@ try_map: > case 0: > abort(); > case 1: > - cmd->prp1 = pagelist[0]; > - cmd->prp2 = 0; > + cmd->dptr.prp.prp1 = pagelist[0]; > + cmd->dptr.prp.prp2 = 0; > break; > case 2: > - cmd->prp1 = pagelist[0]; > - cmd->prp2 = pagelist[1]; > + cmd->dptr.prp.prp1 = pagelist[0]; > + cmd->dptr.prp.prp2 = pagelist[1]; > break; > default: > - cmd->prp1 = pagelist[0]; > - cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); > + cmd->dptr.prp.prp1 = pagelist[0]; > + cmd->dptr.prp.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); > break; > } > trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); > diff --git a/hw/block/nvme.c b/hw/block/nvme.c > index f6591285b504..b3fca3c4ea58 100644 > --- a/hw/block/nvme.c > +++ b/hw/block/nvme.c > @@ -73,7 +73,12 @@ static inline bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) > > static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) > { > - if (n->cmbsz && nvme_addr_is_cmb(n, addr)) { > + hwaddr hi = addr + size; > + if (hi < addr) { What is the actual use case for that ? > + return 1; > + } > + > + if (n->cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { > memcpy(buf, (void *) &n->cmbuf[addr - n->ctrl_mem.addr], size); > return 0; > } > @@ -301,17 +306,287 @@ unmap: > return status; > } > > -static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, > - uint64_t prp1, uint64_t prp2, DMADirection dir, NvmeRequest *req) > +static uint16_t nvme_map_to_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, > + size_t len) > +{ > + hwaddr hi = addr + len; > + if (hi < addr) { > + return NVME_DATA_TRANSFER_ERROR; > + } > + > + if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, hi)) { > + return NVME_DATA_TRANSFER_ERROR; > + } > + > + qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); > + > + return NVME_SUCCESS; > +} > + > +static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg, > + QEMUIOVector *iov, NvmeSglDescriptor *segment, uint64_t nsgld, > + uint32_t *len, bool is_cmb, NvmeRequest *req) > +{ > + dma_addr_t addr, trans_len; > + uint16_t status; > + > + for (int i = 0; i < nsgld; i++) { > + if (NVME_SGL_TYPE(segment[i].type) != SGL_DESCR_TYPE_DATA_BLOCK) { > + trace_nvme_dev_err_invalid_sgl_descriptor(nvme_cid(req), > + NVME_SGL_TYPE(segment[i].type)); > + return NVME_SGL_DESCRIPTOR_TYPE_INVALID | NVME_DNR; > + } > + > + if (*len == 0) { > + if (!NVME_CTRL_SGLS_EXCESS_LENGTH(n->id_ctrl.sgls)) { > + trace_nvme_dev_err_invalid_sgl_excess_length(nvme_cid(req)); > + return NVME_DATA_SGL_LENGTH_INVALID | NVME_DNR; > + } > + > + break; > + } > + > + addr = le64_to_cpu(segment[i].addr); > + trans_len = MIN(*len, le64_to_cpu(segment[i].len)); > + > + if (nvme_addr_is_cmb(n, addr)) { > + /* > + * All data and metadata, if any, associated with a particular > + * command shall be located in either the CMB or host memory. Thus, > + * if an address if found to be in the CMB and we have already s/address if/address is ? > + * mapped data that is in host memory, the use is invalid. > + */ > + if (!is_cmb && qsg->size) { > + return NVME_INVALID_USE_OF_CMB | NVME_DNR; > + } > + } else { > + /* > + * Similarly, if the address does not reference the CMB, but we > + * have already established that the request has data or metadata > + * in the CMB, the use is invalid. > + */ > + if (is_cmb) { > + return NVME_INVALID_USE_OF_CMB | NVME_DNR; > + } > + } > + > + if (is_cmb) { > + status = nvme_map_to_cmb(n, iov, addr, trans_len); > + if (status) { > + return status; > + } > + } else { > + qemu_sglist_add(qsg, addr, trans_len); > + } > + > + *len -= trans_len; > + } > + > + return NVME_SUCCESS; > +} > + > +static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, > + NvmeSglDescriptor sgl, uint32_t len, NvmeRequest *req) > +{ > + const int MAX_NSGLD = 256; > + > + NvmeSglDescriptor segment[MAX_NSGLD]; > + uint64_t nsgld; > + uint16_t status; > + bool is_cmb = false; > + bool sgl_in_cmb = false; > + hwaddr addr = le64_to_cpu(sgl.addr); > + > + trace_nvme_dev_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), req->nlb, len); > + > + if (nvme_addr_is_cmb(n, addr)) { > + is_cmb = true; > + > + qemu_iovec_init(iov, 1); > + } else { > + pci_dma_sglist_init(qsg, &n->parent_obj, 1); > + } > + > + /* > + * If the entire transfer can be described with a single data block it can > + * be mapped directly. > + */ > + if (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_DATA_BLOCK) { > + status = nvme_map_sgl_data(n, qsg, iov, &sgl, 1, &len, is_cmb, req); > + if (status) { > + goto unmap; > + } > + > + goto out; > + } > + > + /* > + * If the segment is located in the CMB, the submission queue of the > + * request must also reside there. > + */ > + if (nvme_addr_is_cmb(n, addr)) { > + if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) { > + return NVME_INVALID_USE_OF_CMB | NVME_DNR; > + } > + > + sgl_in_cmb = true; Why not combining this with the condition few lines above for the nvme_addr_is_cmb ? Also is the sgl_in_cmb really needed ? If the address is from CMB, that implies the queue is also there, otherwise we wouldn't progress beyond this point. Isn't is_cmb sufficient ? > + } > + > + while (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_SEGMENT) { > + bool addr_is_cmb; > + > + nsgld = le64_to_cpu(sgl.len) / sizeof(NvmeSglDescriptor); > + > + /* read the segment in chunks of 256 descriptors (4k) */ > + while (nsgld > MAX_NSGLD) { > + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { > + trace_nvme_dev_err_addr_read(addr); > + status = NVME_DATA_TRANSFER_ERROR; > + goto unmap; > + } > + > + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, > + is_cmb, req); This will probably fail if there is a BitBucket Descriptor on the way (?) > + if (status) { > + goto unmap; > + } > + > + nsgld -= MAX_NSGLD; > + addr += MAX_NSGLD * sizeof(NvmeSglDescriptor); > + } > + > + if (nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor))) { > + trace_nvme_dev_err_addr_read(addr); > + status = NVME_DATA_TRANSFER_ERROR; > + goto unmap; > + } > + > + sgl = segment[nsgld - 1]; > + addr = le64_to_cpu(sgl.addr); > + > + /* an SGL is allowed to end with a Data Block in a regular Segment */ > + if (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_DATA_BLOCK) { > + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, > + is_cmb, req); > + if (status) { > + goto unmap; > + } > + > + goto out; > + } > + > + /* do not map last descriptor */ > + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, > + is_cmb, req); > + if (status) { > + goto unmap; > + } > + > + /* > + * If the next segment is in the CMB, make sure that the sgl was > + * already located there. > + */ > + addr_is_cmb = nvme_addr_is_cmb(n, addr); > + if ((sgl_in_cmb && !addr_is_cmb) || (!sgl_in_cmb && addr_is_cmb)) { > + status = NVME_INVALID_USE_OF_CMB | NVME_DNR; > + goto unmap; > + } > + } > + > + /* > + * If the segment did not end with a Data Block or a Segment descriptor, it > + * must be a Last Segment descriptor. > + */ > + if (NVME_SGL_TYPE(sgl.type) != SGL_DESCR_TYPE_LAST_SEGMENT) { > + trace_nvme_dev_err_invalid_sgl_descriptor(nvme_cid(req), > + NVME_SGL_TYPE(sgl.type)); > + status = NVME_SGL_DESCRIPTOR_TYPE_INVALID | NVME_DNR; > + goto unmap; > + } > + > + nsgld = le64_to_cpu(sgl.len) / sizeof(NvmeSglDescriptor); > + > + while (nsgld > MAX_NSGLD) { > + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { > + trace_nvme_dev_err_addr_read(addr); > + status = NVME_DATA_TRANSFER_ERROR; > + goto unmap; > + } > + > + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, > + is_cmb, req); > + if (status) { > + goto unmap; > + } > + > + nsgld -= MAX_NSGLD; > + addr += MAX_NSGLD * sizeof(NvmeSglDescriptor); > + } > + This seems to be the same as the while loop above. Why not making it common ? BR Beata > + if (nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor))) { > + trace_nvme_dev_err_addr_read(addr); > + status = NVME_DATA_TRANSFER_ERROR; > + goto unmap; > + } > + > + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, is_cmb, req); > + if (status) { > + goto unmap; > + } > + > +out: > + /* if there is any residual left in len, the SGL was too short */ > + if (len) { > + status = NVME_DATA_SGL_LENGTH_INVALID | NVME_DNR; > + goto unmap; > + } > + > + return NVME_SUCCESS; > + > +unmap: > + if (is_cmb) { > + qemu_iovec_destroy(iov); > + } else { > + qemu_sglist_destroy(qsg); > + } > + > + return status; > +} > + > +static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len, > + NvmeCmd *cmd, DMADirection dir, NvmeRequest *req) > { > QEMUSGList qsg; > QEMUIOVector iov; > uint16_t status = NVME_SUCCESS; > size_t bytes; > > - status = nvme_map_prp(n, &qsg, &iov, prp1, prp2, len, req); > - if (status) { > - return status; > + switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { > + case PSDT_PRP: > + status = nvme_map_prp(n, &qsg, &iov, le64_to_cpu(cmd->dptr.prp.prp1), > + le64_to_cpu(cmd->dptr.prp.prp2), len, req); > + if (status) { > + return status; > + } > + > + break; > + > + case PSDT_SGL_MPTR_CONTIGUOUS: > + case PSDT_SGL_MPTR_SGL: > + if (!req->sq->sqid) { > + /* SGLs shall not be used for Admin commands in NVMe over PCIe */ > + return NVME_INVALID_FIELD; > + } > + > + status = nvme_map_sgl(n, &qsg, &iov, cmd->dptr.sgl, len, req); > + if (status) { > + return status; > + } > + > + break; > + > + default: > + return NVME_INVALID_FIELD; > } > > if (qsg.nsg > 0) { > @@ -351,13 +626,21 @@ static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, > > static uint16_t nvme_map(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > { > - NvmeNamespace *ns = req->ns; > + uint32_t len = req->nlb << nvme_ns_lbads(req->ns); > + uint64_t prp1, prp2; > > - uint32_t len = req->nlb << nvme_ns_lbads(ns); > - uint64_t prp1 = le64_to_cpu(cmd->prp1); > - uint64_t prp2 = le64_to_cpu(cmd->prp2); > + switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { > + case PSDT_PRP: > + prp1 = le64_to_cpu(cmd->dptr.prp.prp1); > + prp2 = le64_to_cpu(cmd->dptr.prp.prp2); > > - return nvme_map_prp(n, &req->qsg, &req->iov, prp1, prp2, len, req); > + return nvme_map_prp(n, &req->qsg, &req->iov, prp1, prp2, len, req); > + case PSDT_SGL_MPTR_CONTIGUOUS: > + case PSDT_SGL_MPTR_SGL: > + return nvme_map_sgl(n, &req->qsg, &req->iov, cmd->dptr.sgl, len, req); > + default: > + return NVME_INVALID_FIELD; > + } > } > > static void nvme_aio_destroy(NvmeAIO *aio) > @@ -976,8 +1259,6 @@ static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd) > static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae, > uint32_t buf_len, uint64_t off, NvmeRequest *req) > { > - uint64_t prp1 = le64_to_cpu(cmd->prp1); > - uint64_t prp2 = le64_to_cpu(cmd->prp2); > uint32_t nsid = le32_to_cpu(cmd->nsid); > > uint32_t trans_len; > @@ -1027,16 +1308,14 @@ static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae, > nvme_clear_events(n, NVME_AER_TYPE_SMART); > } > > - return nvme_dma_prp(n, (uint8_t *) &smart + off, trans_len, prp1, > - prp2, DMA_DIRECTION_FROM_DEVICE, req); > + return nvme_dma(n, (uint8_t *) &smart + off, trans_len, cmd, > + DMA_DIRECTION_FROM_DEVICE, req); > } > > static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len, > uint64_t off, NvmeRequest *req) > { > uint32_t trans_len; > - uint64_t prp1 = le64_to_cpu(cmd->prp1); > - uint64_t prp2 = le64_to_cpu(cmd->prp2); > NvmeFwSlotInfoLog fw_log; > > if (off > sizeof(fw_log)) { > @@ -1047,8 +1326,8 @@ static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len, > > trans_len = MIN(sizeof(fw_log) - off, buf_len); > > - return nvme_dma_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1, > - prp2, DMA_DIRECTION_FROM_DEVICE, req); > + return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len, cmd, > + DMA_DIRECTION_FROM_DEVICE, req); > } > > static uint16_t nvme_get_log(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > @@ -1198,25 +1477,18 @@ static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd) > return NVME_SUCCESS; > } > > -static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c, > - NvmeRequest *req) > +static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > { > - uint64_t prp1 = le64_to_cpu(c->prp1); > - uint64_t prp2 = le64_to_cpu(c->prp2); > - > trace_nvme_dev_identify_ctrl(); > > - return nvme_dma_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), > - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); > + return nvme_dma(n, (uint8_t *) &n->id_ctrl, sizeof(n->id_ctrl), cmd, > + DMA_DIRECTION_FROM_DEVICE, req); > } > > -static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c, > - NvmeRequest *req) > +static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > { > NvmeNamespace *ns; > - uint32_t nsid = le32_to_cpu(c->nsid); > - uint64_t prp1 = le64_to_cpu(c->prp1); > - uint64_t prp2 = le64_to_cpu(c->prp2); > + uint32_t nsid = le32_to_cpu(cmd->nsid); > > trace_nvme_dev_identify_ns(nsid); > > @@ -1227,17 +1499,15 @@ static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c, > > ns = &n->namespaces[nsid - 1]; > > - return nvme_dma_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns), > - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); > + return nvme_dma(n, (uint8_t *) &ns->id_ns, sizeof(ns->id_ns), cmd, > + DMA_DIRECTION_FROM_DEVICE, req); > } > > -static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeIdentify *c, > +static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeCmd *cmd, > NvmeRequest *req) > { > static const int data_len = 4 * KiB; > - uint32_t min_nsid = le32_to_cpu(c->nsid); > - uint64_t prp1 = le64_to_cpu(c->prp1); > - uint64_t prp2 = le64_to_cpu(c->prp2); > + uint32_t min_nsid = le32_to_cpu(cmd->nsid); > uint32_t *list; > uint16_t ret; > int i, j = 0; > @@ -1254,13 +1524,13 @@ static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeIdentify *c, > break; > } > } > - ret = nvme_dma_prp(n, (uint8_t *)list, data_len, prp1, prp2, > + ret = nvme_dma(n, (uint8_t *) list, data_len, cmd, > DMA_DIRECTION_FROM_DEVICE, req); > g_free(list); > return ret; > } > > -static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, > +static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeCmd *cmd, > NvmeRequest *req) > { > static const int len = 4096; > @@ -1272,9 +1542,7 @@ static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, > uint8_t nid[16]; > }; > > - uint32_t nsid = le32_to_cpu(c->nsid); > - uint64_t prp1 = le64_to_cpu(c->prp1); > - uint64_t prp2 = le64_to_cpu(c->prp2); > + uint32_t nsid = le32_to_cpu(cmd->nsid); > > struct ns_descr *list; > uint16_t ret; > @@ -1297,8 +1565,8 @@ static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, > list->nidl = 0x10; > *(uint32_t *) &list->nid[12] = cpu_to_be32(nsid); > > - ret = nvme_dma_prp(n, (uint8_t *) list, len, prp1, prp2, > - DMA_DIRECTION_FROM_DEVICE, req); > + ret = nvme_dma(n, (uint8_t *) list, len, cmd, DMA_DIRECTION_FROM_DEVICE, > + req); > g_free(list); > return ret; > } > @@ -1309,13 +1577,13 @@ static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > > switch (le32_to_cpu(c->cns)) { > case 0x00: > - return nvme_identify_ns(n, c, req); > + return nvme_identify_ns(n, cmd, req); > case 0x01: > - return nvme_identify_ctrl(n, c, req); > + return nvme_identify_ctrl(n, cmd, req); > case 0x02: > - return nvme_identify_ns_list(n, c, req); > + return nvme_identify_ns_list(n, cmd, req); > case 0x03: > - return nvme_identify_ns_descr_list(n, c, req); > + return nvme_identify_ns_descr_list(n, cmd, req); > default: > trace_nvme_dev_err_invalid_identify_cns(le32_to_cpu(c->cns)); > return NVME_INVALID_FIELD | NVME_DNR; > @@ -1377,13 +1645,10 @@ static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) > static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd, > NvmeRequest *req) > { > - uint64_t prp1 = le64_to_cpu(cmd->prp1); > - uint64_t prp2 = le64_to_cpu(cmd->prp2); > - > uint64_t timestamp = nvme_get_timestamp(n); > > - return nvme_dma_prp(n, (uint8_t *)×tamp, sizeof(timestamp), > - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); > + return nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), cmd, > + DMA_DIRECTION_FROM_DEVICE, req); > } > > static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) > @@ -1466,11 +1731,9 @@ static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd, > { > uint16_t ret; > uint64_t timestamp; > - uint64_t prp1 = le64_to_cpu(cmd->prp1); > - uint64_t prp2 = le64_to_cpu(cmd->prp2); > > - ret = nvme_dma_prp(n, (uint8_t *) ×tamp, sizeof(timestamp), > - prp1, prp2, DMA_DIRECTION_TO_DEVICE, req); > + ret = nvme_dma(n, (uint8_t *) ×tamp, sizeof(timestamp), cmd, > + DMA_DIRECTION_TO_DEVICE, req); > if (ret != NVME_SUCCESS) { > return ret; > } > @@ -2238,6 +2501,8 @@ static void nvme_init_ctrl(NvmeCtrl *n) > id->vwc = 1; > } > > + id->sgls = cpu_to_le32(0x1); > + > strcpy((char *) id->subnqn, "nqn.2019-08.org.qemu:"); > pstrcat((char *) id->subnqn, sizeof(id->subnqn), n->params.serial); > > diff --git a/hw/block/trace-events b/hw/block/trace-events > index 09bfb3782dd0..8901cf087ee2 100644 > --- a/hw/block/trace-events > +++ b/hw/block/trace-events > @@ -34,6 +34,7 @@ nvme_dev_irq_pin(void) "pulsing IRQ pin" > nvme_dev_irq_masked(void) "IRQ is masked" > nvme_dev_dma_read(uint64_t prp1, uint64_t prp2) "DMA read, prp1=0x%"PRIx64" prp2=0x%"PRIx64"" > nvme_dev_map_prp(uint16_t cid, uint8_t opc, uint64_t trans_len, uint32_t len, uint64_t prp1, uint64_t prp2, int num_prps) "cid %"PRIu16" opc 0x%"PRIx8" trans_len %"PRIu64" len %"PRIu32" prp1 0x%"PRIx64" prp2 0x%"PRIx64" num_prps %d" > +nvme_dev_map_sgl(uint16_t cid, uint8_t typ, uint32_t nlb, uint64_t len) "cid %"PRIu16" type 0x%"PRIx8" nlb %"PRIu32" len %"PRIu64"" > nvme_dev_req_register_aio(uint16_t cid, void *aio, const char *blkname, uint64_t offset, uint64_t count, const char *opc, void *req) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" count %"PRIu64" opc \"%s\" req %p" > nvme_dev_aio_cb(uint16_t cid, void *aio, const char *blkname, uint64_t offset, const char *opc, void *req) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" opc \"%s\" req %p" > nvme_dev_io_cmd(uint16_t cid, uint32_t nsid, uint16_t sqid, uint8_t opcode) "cid %"PRIu16" nsid %"PRIu32" sqid %"PRIu16" opc 0x%"PRIx8"" > @@ -85,6 +86,8 @@ nvme_dev_err_prinfo(uint16_t cid, uint16_t ctrl) "cid %"PRIu16" ctrl %"PRIu16"" > nvme_dev_err_aio(uint16_t cid, void *aio, const char *blkname, uint64_t offset, const char *opc, void *req, uint16_t status) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" opc \"%s\" req %p status 0x%"PRIx16"" > nvme_dev_err_addr_read(uint64_t addr) "addr 0x%"PRIx64"" > nvme_dev_err_addr_write(uint64_t addr) "addr 0x%"PRIx64"" > +nvme_dev_err_invalid_sgl_descriptor(uint16_t cid, uint8_t typ) "cid %"PRIu16" type 0x%"PRIx8"" > +nvme_dev_err_invalid_sgl_excess_length(uint16_t cid) "cid %"PRIu16"" > nvme_dev_err_invalid_dma(void) "PRP/SGL is too small for transfer size" > nvme_dev_err_invalid_prplist_ent(uint64_t prplist) "PRP list entry is null or not page aligned: 0x%"PRIx64"" > nvme_dev_err_invalid_prp2_align(uint64_t prp2) "PRP2 is not page aligned: 0x%"PRIx64"" > diff --git a/include/block/nvme.h b/include/block/nvme.h > index a873776d98b8..f3d41daae105 100644 > --- a/include/block/nvme.h > +++ b/include/block/nvme.h > @@ -205,15 +205,53 @@ enum NvmeCmbszMask { > #define NVME_CMBSZ_GETSIZE(cmbsz) \ > (NVME_CMBSZ_SZ(cmbsz) * (1 << (12 + 4 * NVME_CMBSZ_SZU(cmbsz)))) > > +enum NvmeSglDescriptorType { > + SGL_DESCR_TYPE_DATA_BLOCK = 0x0, > + SGL_DESCR_TYPE_BIT_BUCKET = 0x1, > + SGL_DESCR_TYPE_SEGMENT = 0x2, > + SGL_DESCR_TYPE_LAST_SEGMENT = 0x3, > + SGL_DESCR_TYPE_KEYED_DATA_BLOCK = 0x4, > + > + SGL_DESCR_TYPE_VENDOR_SPECIFIC = 0xf, > +}; > + > +enum NvmeSglDescriptorSubtype { > + SGL_DESCR_SUBTYPE_ADDRESS = 0x0, > + SGL_DESCR_SUBTYPE_OFFSET = 0x1, > +}; > + > +typedef struct NvmeSglDescriptor { > + uint64_t addr; > + uint32_t len; > + uint8_t rsvd[3]; > + uint8_t type; > +} NvmeSglDescriptor; > + > +#define NVME_SGL_TYPE(type) (type >> 4) > + > +typedef union NvmeCmdDptr { > + struct { > + uint64_t prp1; > + uint64_t prp2; > + } prp; > + > + NvmeSglDescriptor sgl; > +} NvmeCmdDptr; > + > +enum NvmePsdt { > + PSDT_PRP = 0x0, > + PSDT_SGL_MPTR_CONTIGUOUS = 0x1, > + PSDT_SGL_MPTR_SGL = 0x2, > +}; > + > typedef struct NvmeCmd { > uint8_t opcode; > - uint8_t fuse; > + uint8_t flags; > uint16_t cid; > uint32_t nsid; > uint64_t res1; > uint64_t mptr; > - uint64_t prp1; > - uint64_t prp2; > + NvmeCmdDptr dptr; > uint32_t cdw10; > uint32_t cdw11; > uint32_t cdw12; > @@ -222,6 +260,9 @@ typedef struct NvmeCmd { > uint32_t cdw15; > } NvmeCmd; > > +#define NVME_CMD_FLAGS_FUSE(flags) (flags & 0x3) > +#define NVME_CMD_FLAGS_PSDT(flags) ((flags >> 6) & 0x3) > + > enum NvmeAdminCommands { > NVME_ADM_CMD_DELETE_SQ = 0x00, > NVME_ADM_CMD_CREATE_SQ = 0x01, > @@ -427,6 +468,11 @@ enum NvmeStatusCodes { > NVME_CMD_ABORT_MISSING_FUSE = 0x000a, > NVME_INVALID_NSID = 0x000b, > NVME_CMD_SEQ_ERROR = 0x000c, > + NVME_INVALID_SGL_SEG_DESCRIPTOR = 0x000d, > + NVME_INVALID_NUM_SGL_DESCRIPTORS = 0x000e, > + NVME_DATA_SGL_LENGTH_INVALID = 0x000f, > + NVME_METADATA_SGL_LENGTH_INVALID = 0x0010, > + NVME_SGL_DESCRIPTOR_TYPE_INVALID = 0x0011, > NVME_INVALID_USE_OF_CMB = 0x0012, > NVME_LBA_RANGE = 0x0080, > NVME_CAP_EXCEEDED = 0x0081, > @@ -623,6 +669,16 @@ enum NvmeIdCtrlOncs { > #define NVME_CTRL_CQES_MIN(cqes) ((cqes) & 0xf) > #define NVME_CTRL_CQES_MAX(cqes) (((cqes) >> 4) & 0xf) > > +#define NVME_CTRL_SGLS_SUPPORTED(sgls) ((sgls) & 0x3) > +#define NVME_CTRL_SGLS_SUPPORTED_NO_ALIGNMENT(sgls) ((sgls) & (0x1 << 0)) > +#define NVME_CTRL_SGLS_SUPPORTED_DWORD_ALIGNMENT(sgls) ((sgls) & (0x1 << 1)) > +#define NVME_CTRL_SGLS_KEYED(sgls) ((sgls) & (0x1 << 2)) > +#define NVME_CTRL_SGLS_BITBUCKET(sgls) ((sgls) & (0x1 << 16)) > +#define NVME_CTRL_SGLS_MPTR_CONTIGUOUS(sgls) ((sgls) & (0x1 << 17)) > +#define NVME_CTRL_SGLS_EXCESS_LENGTH(sgls) ((sgls) & (0x1 << 18)) > +#define NVME_CTRL_SGLS_MPTR_SGL(sgls) ((sgls) & (0x1 << 19)) > +#define NVME_CTRL_SGLS_ADDR_OFFSET(sgls) ((sgls) & (0x1 << 20)) > + > typedef struct NvmeFeatureVal { > uint32_t arbitration; > uint32_t power_mgmt; > -- > 2.24.1 >
On Jan 9 11:44, Beata Michalska wrote: > Hi Klaus, > > On Thu, 19 Dec 2019 at 13:09, Klaus Jensen <k.jensen@samsung.com> wrote: > > @@ -73,7 +73,12 @@ static inline bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) > > > > static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) > > { > > - if (n->cmbsz && nvme_addr_is_cmb(n, addr)) { > > + hwaddr hi = addr + size; > > + if (hi < addr) { > > What is the actual use case for that ? This was for detecting wrap around in the unsigned addition. I found that nvme_map_sgl does not check if addr + size is out of bounds (which it should). With that in place this check is belt and braces, so I might remove it. > > +static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg, > > + QEMUIOVector *iov, NvmeSglDescriptor *segment, uint64_t nsgld, > > + uint32_t *len, bool is_cmb, NvmeRequest *req) > > +{ > > + dma_addr_t addr, trans_len; > > + uint16_t status; > > + > > + for (int i = 0; i < nsgld; i++) { > > + if (NVME_SGL_TYPE(segment[i].type) != SGL_DESCR_TYPE_DATA_BLOCK) { > > + trace_nvme_dev_err_invalid_sgl_descriptor(nvme_cid(req), > > + NVME_SGL_TYPE(segment[i].type)); > > + return NVME_SGL_DESCRIPTOR_TYPE_INVALID | NVME_DNR; > > + } > > + > > + if (*len == 0) { > > + if (!NVME_CTRL_SGLS_EXCESS_LENGTH(n->id_ctrl.sgls)) { > > + trace_nvme_dev_err_invalid_sgl_excess_length(nvme_cid(req)); > > + return NVME_DATA_SGL_LENGTH_INVALID | NVME_DNR; > > + } > > + > > + break; > > + } > > + > > + addr = le64_to_cpu(segment[i].addr); > > + trans_len = MIN(*len, le64_to_cpu(segment[i].len)); > > + > > + if (nvme_addr_is_cmb(n, addr)) { > > + /* > > + * All data and metadata, if any, associated with a particular > > + * command shall be located in either the CMB or host memory. Thus, > > + * if an address if found to be in the CMB and we have already > > s/address if/address is ? Fixed, thanks. > > +static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, > > + NvmeSglDescriptor sgl, uint32_t len, NvmeRequest *req) > > +{ > > + const int MAX_NSGLD = 256; > > + > > + NvmeSglDescriptor segment[MAX_NSGLD]; > > + uint64_t nsgld; > > + uint16_t status; > > + bool is_cmb = false; > > + bool sgl_in_cmb = false; > > + hwaddr addr = le64_to_cpu(sgl.addr); > > + > > + trace_nvme_dev_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), req->nlb, len); > > + > > + if (nvme_addr_is_cmb(n, addr)) { > > + is_cmb = true; > > + > > + qemu_iovec_init(iov, 1); > > + } else { > > + pci_dma_sglist_init(qsg, &n->parent_obj, 1); > > + } > > + > > + /* > > + * If the entire transfer can be described with a single data block it can > > + * be mapped directly. > > + */ > > + if (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_DATA_BLOCK) { > > + status = nvme_map_sgl_data(n, qsg, iov, &sgl, 1, &len, is_cmb, req); > > + if (status) { > > + goto unmap; > > + } > > + > > + goto out; > > + } > > + > > + /* > > + * If the segment is located in the CMB, the submission queue of the > > + * request must also reside there. > > + */ > > + if (nvme_addr_is_cmb(n, addr)) { > > + if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) { > > + return NVME_INVALID_USE_OF_CMB | NVME_DNR; > > + } > > + > > + sgl_in_cmb = true; > > Why not combining this with the condition few lines above > for the nvme_addr_is_cmb ? Also is the sgl_in_cmb really needed ? > If the address is from CMB, that implies the queue is also there, > otherwise we wouldn't progress beyond this point. Isn't is_cmb sufficient ? > You are right, there is no need for sgl_in_cmb. But checking if the queue is in the cmb only needs to be done if the descriptor in DPTR is *not* a "singleton" data block. But I think I can refactor it to be slightly nicer, or at least be more specific in the comments. > > + } > > + > > + while (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_SEGMENT) { > > + bool addr_is_cmb; > > + > > + nsgld = le64_to_cpu(sgl.len) / sizeof(NvmeSglDescriptor); > > + > > + /* read the segment in chunks of 256 descriptors (4k) */ > > + while (nsgld > MAX_NSGLD) { > > + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { > > + trace_nvme_dev_err_addr_read(addr); > > + status = NVME_DATA_TRANSFER_ERROR; > > + goto unmap; > > + } > > + > > + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, > > + is_cmb, req); > > This will probably fail if there is a BitBucket Descriptor on the way (?) > nvme_map_sgl_data will error out on any descriptors different from "DATA_BLOCK". So I think we are good. > > + while (nsgld > MAX_NSGLD) { > > + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { > > + trace_nvme_dev_err_addr_read(addr); > > + status = NVME_DATA_TRANSFER_ERROR; > > + goto unmap; > > + } > > + > > + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, > > + is_cmb, req); > > + if (status) { > > + goto unmap; > > + } > > + > > + nsgld -= MAX_NSGLD; > > + addr += MAX_NSGLD * sizeof(NvmeSglDescriptor); > > + } > > + > > This seems to be the same as the while loop above. Why not making it common ? > Yeah, this should probably be refactored. Thanks again for your reviews! Klaus
diff --git a/block/nvme.c b/block/nvme.c index d41c4bda6e39..521f521054d5 100644 --- a/block/nvme.c +++ b/block/nvme.c @@ -446,7 +446,7 @@ static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) error_setg(errp, "Cannot map buffer for DMA"); goto out; } - cmd.prp1 = cpu_to_le64(iova); + cmd.dptr.prp.prp1 = cpu_to_le64(iova); if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { error_setg(errp, "Failed to identify controller"); @@ -545,7 +545,7 @@ static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) } cmd = (NvmeCmd) { .opcode = NVME_ADM_CMD_CREATE_CQ, - .prp1 = cpu_to_le64(q->cq.iova), + .dptr.prp.prp1 = cpu_to_le64(q->cq.iova), .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), .cdw11 = cpu_to_le32(0x3), }; @@ -556,7 +556,7 @@ static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) } cmd = (NvmeCmd) { .opcode = NVME_ADM_CMD_CREATE_SQ, - .prp1 = cpu_to_le64(q->sq.iova), + .dptr.prp.prp1 = cpu_to_le64(q->sq.iova), .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), .cdw11 = cpu_to_le32(0x1 | (n << 16)), }; @@ -906,16 +906,16 @@ try_map: case 0: abort(); case 1: - cmd->prp1 = pagelist[0]; - cmd->prp2 = 0; + cmd->dptr.prp.prp1 = pagelist[0]; + cmd->dptr.prp.prp2 = 0; break; case 2: - cmd->prp1 = pagelist[0]; - cmd->prp2 = pagelist[1]; + cmd->dptr.prp.prp1 = pagelist[0]; + cmd->dptr.prp.prp2 = pagelist[1]; break; default: - cmd->prp1 = pagelist[0]; - cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); + cmd->dptr.prp.prp1 = pagelist[0]; + cmd->dptr.prp.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); break; } trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); diff --git a/hw/block/nvme.c b/hw/block/nvme.c index f6591285b504..b3fca3c4ea58 100644 --- a/hw/block/nvme.c +++ b/hw/block/nvme.c @@ -73,7 +73,12 @@ static inline bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) { - if (n->cmbsz && nvme_addr_is_cmb(n, addr)) { + hwaddr hi = addr + size; + if (hi < addr) { + return 1; + } + + if (n->cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { memcpy(buf, (void *) &n->cmbuf[addr - n->ctrl_mem.addr], size); return 0; } @@ -301,17 +306,287 @@ unmap: return status; } -static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, - uint64_t prp1, uint64_t prp2, DMADirection dir, NvmeRequest *req) +static uint16_t nvme_map_to_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, + size_t len) +{ + hwaddr hi = addr + len; + if (hi < addr) { + return NVME_DATA_TRANSFER_ERROR; + } + + if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, hi)) { + return NVME_DATA_TRANSFER_ERROR; + } + + qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); + + return NVME_SUCCESS; +} + +static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg, + QEMUIOVector *iov, NvmeSglDescriptor *segment, uint64_t nsgld, + uint32_t *len, bool is_cmb, NvmeRequest *req) +{ + dma_addr_t addr, trans_len; + uint16_t status; + + for (int i = 0; i < nsgld; i++) { + if (NVME_SGL_TYPE(segment[i].type) != SGL_DESCR_TYPE_DATA_BLOCK) { + trace_nvme_dev_err_invalid_sgl_descriptor(nvme_cid(req), + NVME_SGL_TYPE(segment[i].type)); + return NVME_SGL_DESCRIPTOR_TYPE_INVALID | NVME_DNR; + } + + if (*len == 0) { + if (!NVME_CTRL_SGLS_EXCESS_LENGTH(n->id_ctrl.sgls)) { + trace_nvme_dev_err_invalid_sgl_excess_length(nvme_cid(req)); + return NVME_DATA_SGL_LENGTH_INVALID | NVME_DNR; + } + + break; + } + + addr = le64_to_cpu(segment[i].addr); + trans_len = MIN(*len, le64_to_cpu(segment[i].len)); + + if (nvme_addr_is_cmb(n, addr)) { + /* + * All data and metadata, if any, associated with a particular + * command shall be located in either the CMB or host memory. Thus, + * if an address if found to be in the CMB and we have already + * mapped data that is in host memory, the use is invalid. + */ + if (!is_cmb && qsg->size) { + return NVME_INVALID_USE_OF_CMB | NVME_DNR; + } + } else { + /* + * Similarly, if the address does not reference the CMB, but we + * have already established that the request has data or metadata + * in the CMB, the use is invalid. + */ + if (is_cmb) { + return NVME_INVALID_USE_OF_CMB | NVME_DNR; + } + } + + if (is_cmb) { + status = nvme_map_to_cmb(n, iov, addr, trans_len); + if (status) { + return status; + } + } else { + qemu_sglist_add(qsg, addr, trans_len); + } + + *len -= trans_len; + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, + NvmeSglDescriptor sgl, uint32_t len, NvmeRequest *req) +{ + const int MAX_NSGLD = 256; + + NvmeSglDescriptor segment[MAX_NSGLD]; + uint64_t nsgld; + uint16_t status; + bool is_cmb = false; + bool sgl_in_cmb = false; + hwaddr addr = le64_to_cpu(sgl.addr); + + trace_nvme_dev_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), req->nlb, len); + + if (nvme_addr_is_cmb(n, addr)) { + is_cmb = true; + + qemu_iovec_init(iov, 1); + } else { + pci_dma_sglist_init(qsg, &n->parent_obj, 1); + } + + /* + * If the entire transfer can be described with a single data block it can + * be mapped directly. + */ + if (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_DATA_BLOCK) { + status = nvme_map_sgl_data(n, qsg, iov, &sgl, 1, &len, is_cmb, req); + if (status) { + goto unmap; + } + + goto out; + } + + /* + * If the segment is located in the CMB, the submission queue of the + * request must also reside there. + */ + if (nvme_addr_is_cmb(n, addr)) { + if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) { + return NVME_INVALID_USE_OF_CMB | NVME_DNR; + } + + sgl_in_cmb = true; + } + + while (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_SEGMENT) { + bool addr_is_cmb; + + nsgld = le64_to_cpu(sgl.len) / sizeof(NvmeSglDescriptor); + + /* read the segment in chunks of 256 descriptors (4k) */ + while (nsgld > MAX_NSGLD) { + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { + trace_nvme_dev_err_addr_read(addr); + status = NVME_DATA_TRANSFER_ERROR; + goto unmap; + } + + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, + is_cmb, req); + if (status) { + goto unmap; + } + + nsgld -= MAX_NSGLD; + addr += MAX_NSGLD * sizeof(NvmeSglDescriptor); + } + + if (nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor))) { + trace_nvme_dev_err_addr_read(addr); + status = NVME_DATA_TRANSFER_ERROR; + goto unmap; + } + + sgl = segment[nsgld - 1]; + addr = le64_to_cpu(sgl.addr); + + /* an SGL is allowed to end with a Data Block in a regular Segment */ + if (NVME_SGL_TYPE(sgl.type) == SGL_DESCR_TYPE_DATA_BLOCK) { + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, + is_cmb, req); + if (status) { + goto unmap; + } + + goto out; + } + + /* do not map last descriptor */ + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, + is_cmb, req); + if (status) { + goto unmap; + } + + /* + * If the next segment is in the CMB, make sure that the sgl was + * already located there. + */ + addr_is_cmb = nvme_addr_is_cmb(n, addr); + if ((sgl_in_cmb && !addr_is_cmb) || (!sgl_in_cmb && addr_is_cmb)) { + status = NVME_INVALID_USE_OF_CMB | NVME_DNR; + goto unmap; + } + } + + /* + * If the segment did not end with a Data Block or a Segment descriptor, it + * must be a Last Segment descriptor. + */ + if (NVME_SGL_TYPE(sgl.type) != SGL_DESCR_TYPE_LAST_SEGMENT) { + trace_nvme_dev_err_invalid_sgl_descriptor(nvme_cid(req), + NVME_SGL_TYPE(sgl.type)); + status = NVME_SGL_DESCRIPTOR_TYPE_INVALID | NVME_DNR; + goto unmap; + } + + nsgld = le64_to_cpu(sgl.len) / sizeof(NvmeSglDescriptor); + + while (nsgld > MAX_NSGLD) { + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { + trace_nvme_dev_err_addr_read(addr); + status = NVME_DATA_TRANSFER_ERROR; + goto unmap; + } + + status = nvme_map_sgl_data(n, qsg, iov, segment, MAX_NSGLD, &len, + is_cmb, req); + if (status) { + goto unmap; + } + + nsgld -= MAX_NSGLD; + addr += MAX_NSGLD * sizeof(NvmeSglDescriptor); + } + + if (nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor))) { + trace_nvme_dev_err_addr_read(addr); + status = NVME_DATA_TRANSFER_ERROR; + goto unmap; + } + + status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, is_cmb, req); + if (status) { + goto unmap; + } + +out: + /* if there is any residual left in len, the SGL was too short */ + if (len) { + status = NVME_DATA_SGL_LENGTH_INVALID | NVME_DNR; + goto unmap; + } + + return NVME_SUCCESS; + +unmap: + if (is_cmb) { + qemu_iovec_destroy(iov); + } else { + qemu_sglist_destroy(qsg); + } + + return status; +} + +static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len, + NvmeCmd *cmd, DMADirection dir, NvmeRequest *req) { QEMUSGList qsg; QEMUIOVector iov; uint16_t status = NVME_SUCCESS; size_t bytes; - status = nvme_map_prp(n, &qsg, &iov, prp1, prp2, len, req); - if (status) { - return status; + switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { + case PSDT_PRP: + status = nvme_map_prp(n, &qsg, &iov, le64_to_cpu(cmd->dptr.prp.prp1), + le64_to_cpu(cmd->dptr.prp.prp2), len, req); + if (status) { + return status; + } + + break; + + case PSDT_SGL_MPTR_CONTIGUOUS: + case PSDT_SGL_MPTR_SGL: + if (!req->sq->sqid) { + /* SGLs shall not be used for Admin commands in NVMe over PCIe */ + return NVME_INVALID_FIELD; + } + + status = nvme_map_sgl(n, &qsg, &iov, cmd->dptr.sgl, len, req); + if (status) { + return status; + } + + break; + + default: + return NVME_INVALID_FIELD; } if (qsg.nsg > 0) { @@ -351,13 +626,21 @@ static uint16_t nvme_dma_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len, static uint16_t nvme_map(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { - NvmeNamespace *ns = req->ns; + uint32_t len = req->nlb << nvme_ns_lbads(req->ns); + uint64_t prp1, prp2; - uint32_t len = req->nlb << nvme_ns_lbads(ns); - uint64_t prp1 = le64_to_cpu(cmd->prp1); - uint64_t prp2 = le64_to_cpu(cmd->prp2); + switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { + case PSDT_PRP: + prp1 = le64_to_cpu(cmd->dptr.prp.prp1); + prp2 = le64_to_cpu(cmd->dptr.prp.prp2); - return nvme_map_prp(n, &req->qsg, &req->iov, prp1, prp2, len, req); + return nvme_map_prp(n, &req->qsg, &req->iov, prp1, prp2, len, req); + case PSDT_SGL_MPTR_CONTIGUOUS: + case PSDT_SGL_MPTR_SGL: + return nvme_map_sgl(n, &req->qsg, &req->iov, cmd->dptr.sgl, len, req); + default: + return NVME_INVALID_FIELD; + } } static void nvme_aio_destroy(NvmeAIO *aio) @@ -976,8 +1259,6 @@ static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd) static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { - uint64_t prp1 = le64_to_cpu(cmd->prp1); - uint64_t prp2 = le64_to_cpu(cmd->prp2); uint32_t nsid = le32_to_cpu(cmd->nsid); uint32_t trans_len; @@ -1027,16 +1308,14 @@ static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae, nvme_clear_events(n, NVME_AER_TYPE_SMART); } - return nvme_dma_prp(n, (uint8_t *) &smart + off, trans_len, prp1, - prp2, DMA_DIRECTION_FROM_DEVICE, req); + return nvme_dma(n, (uint8_t *) &smart + off, trans_len, cmd, + DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; - uint64_t prp1 = le64_to_cpu(cmd->prp1); - uint64_t prp2 = le64_to_cpu(cmd->prp2); NvmeFwSlotInfoLog fw_log; if (off > sizeof(fw_log)) { @@ -1047,8 +1326,8 @@ static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len, trans_len = MIN(sizeof(fw_log) - off, buf_len); - return nvme_dma_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1, - prp2, DMA_DIRECTION_FROM_DEVICE, req); + return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len, cmd, + DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_log(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) @@ -1198,25 +1477,18 @@ static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd) return NVME_SUCCESS; } -static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c, - NvmeRequest *req) +static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { - uint64_t prp1 = le64_to_cpu(c->prp1); - uint64_t prp2 = le64_to_cpu(c->prp2); - trace_nvme_dev_identify_ctrl(); - return nvme_dma_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); + return nvme_dma(n, (uint8_t *) &n->id_ctrl, sizeof(n->id_ctrl), cmd, + DMA_DIRECTION_FROM_DEVICE, req); } -static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c, - NvmeRequest *req) +static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { NvmeNamespace *ns; - uint32_t nsid = le32_to_cpu(c->nsid); - uint64_t prp1 = le64_to_cpu(c->prp1); - uint64_t prp2 = le64_to_cpu(c->prp2); + uint32_t nsid = le32_to_cpu(cmd->nsid); trace_nvme_dev_identify_ns(nsid); @@ -1227,17 +1499,15 @@ static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c, ns = &n->namespaces[nsid - 1]; - return nvme_dma_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns), - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); + return nvme_dma(n, (uint8_t *) &ns->id_ns, sizeof(ns->id_ns), cmd, + DMA_DIRECTION_FROM_DEVICE, req); } -static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeIdentify *c, +static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { static const int data_len = 4 * KiB; - uint32_t min_nsid = le32_to_cpu(c->nsid); - uint64_t prp1 = le64_to_cpu(c->prp1); - uint64_t prp2 = le64_to_cpu(c->prp2); + uint32_t min_nsid = le32_to_cpu(cmd->nsid); uint32_t *list; uint16_t ret; int i, j = 0; @@ -1254,13 +1524,13 @@ static uint16_t nvme_identify_ns_list(NvmeCtrl *n, NvmeIdentify *c, break; } } - ret = nvme_dma_prp(n, (uint8_t *)list, data_len, prp1, prp2, + ret = nvme_dma(n, (uint8_t *) list, data_len, cmd, DMA_DIRECTION_FROM_DEVICE, req); g_free(list); return ret; } -static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, +static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { static const int len = 4096; @@ -1272,9 +1542,7 @@ static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, uint8_t nid[16]; }; - uint32_t nsid = le32_to_cpu(c->nsid); - uint64_t prp1 = le64_to_cpu(c->prp1); - uint64_t prp2 = le64_to_cpu(c->prp2); + uint32_t nsid = le32_to_cpu(cmd->nsid); struct ns_descr *list; uint16_t ret; @@ -1297,8 +1565,8 @@ static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c, list->nidl = 0x10; *(uint32_t *) &list->nid[12] = cpu_to_be32(nsid); - ret = nvme_dma_prp(n, (uint8_t *) list, len, prp1, prp2, - DMA_DIRECTION_FROM_DEVICE, req); + ret = nvme_dma(n, (uint8_t *) list, len, cmd, DMA_DIRECTION_FROM_DEVICE, + req); g_free(list); return ret; } @@ -1309,13 +1577,13 @@ static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) switch (le32_to_cpu(c->cns)) { case 0x00: - return nvme_identify_ns(n, c, req); + return nvme_identify_ns(n, cmd, req); case 0x01: - return nvme_identify_ctrl(n, c, req); + return nvme_identify_ctrl(n, cmd, req); case 0x02: - return nvme_identify_ns_list(n, c, req); + return nvme_identify_ns_list(n, cmd, req); case 0x03: - return nvme_identify_ns_descr_list(n, c, req); + return nvme_identify_ns_descr_list(n, cmd, req); default: trace_nvme_dev_err_invalid_identify_cns(le32_to_cpu(c->cns)); return NVME_INVALID_FIELD | NVME_DNR; @@ -1377,13 +1645,10 @@ static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) { - uint64_t prp1 = le64_to_cpu(cmd->prp1); - uint64_t prp2 = le64_to_cpu(cmd->prp2); - uint64_t timestamp = nvme_get_timestamp(n); - return nvme_dma_prp(n, (uint8_t *)×tamp, sizeof(timestamp), - prp1, prp2, DMA_DIRECTION_FROM_DEVICE, req); + return nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), cmd, + DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req) @@ -1466,11 +1731,9 @@ static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd, { uint16_t ret; uint64_t timestamp; - uint64_t prp1 = le64_to_cpu(cmd->prp1); - uint64_t prp2 = le64_to_cpu(cmd->prp2); - ret = nvme_dma_prp(n, (uint8_t *) ×tamp, sizeof(timestamp), - prp1, prp2, DMA_DIRECTION_TO_DEVICE, req); + ret = nvme_dma(n, (uint8_t *) ×tamp, sizeof(timestamp), cmd, + DMA_DIRECTION_TO_DEVICE, req); if (ret != NVME_SUCCESS) { return ret; } @@ -2238,6 +2501,8 @@ static void nvme_init_ctrl(NvmeCtrl *n) id->vwc = 1; } + id->sgls = cpu_to_le32(0x1); + strcpy((char *) id->subnqn, "nqn.2019-08.org.qemu:"); pstrcat((char *) id->subnqn, sizeof(id->subnqn), n->params.serial); diff --git a/hw/block/trace-events b/hw/block/trace-events index 09bfb3782dd0..8901cf087ee2 100644 --- a/hw/block/trace-events +++ b/hw/block/trace-events @@ -34,6 +34,7 @@ nvme_dev_irq_pin(void) "pulsing IRQ pin" nvme_dev_irq_masked(void) "IRQ is masked" nvme_dev_dma_read(uint64_t prp1, uint64_t prp2) "DMA read, prp1=0x%"PRIx64" prp2=0x%"PRIx64"" nvme_dev_map_prp(uint16_t cid, uint8_t opc, uint64_t trans_len, uint32_t len, uint64_t prp1, uint64_t prp2, int num_prps) "cid %"PRIu16" opc 0x%"PRIx8" trans_len %"PRIu64" len %"PRIu32" prp1 0x%"PRIx64" prp2 0x%"PRIx64" num_prps %d" +nvme_dev_map_sgl(uint16_t cid, uint8_t typ, uint32_t nlb, uint64_t len) "cid %"PRIu16" type 0x%"PRIx8" nlb %"PRIu32" len %"PRIu64"" nvme_dev_req_register_aio(uint16_t cid, void *aio, const char *blkname, uint64_t offset, uint64_t count, const char *opc, void *req) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" count %"PRIu64" opc \"%s\" req %p" nvme_dev_aio_cb(uint16_t cid, void *aio, const char *blkname, uint64_t offset, const char *opc, void *req) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" opc \"%s\" req %p" nvme_dev_io_cmd(uint16_t cid, uint32_t nsid, uint16_t sqid, uint8_t opcode) "cid %"PRIu16" nsid %"PRIu32" sqid %"PRIu16" opc 0x%"PRIx8"" @@ -85,6 +86,8 @@ nvme_dev_err_prinfo(uint16_t cid, uint16_t ctrl) "cid %"PRIu16" ctrl %"PRIu16"" nvme_dev_err_aio(uint16_t cid, void *aio, const char *blkname, uint64_t offset, const char *opc, void *req, uint16_t status) "cid %"PRIu16" aio %p blk \"%s\" offset %"PRIu64" opc \"%s\" req %p status 0x%"PRIx16"" nvme_dev_err_addr_read(uint64_t addr) "addr 0x%"PRIx64"" nvme_dev_err_addr_write(uint64_t addr) "addr 0x%"PRIx64"" +nvme_dev_err_invalid_sgl_descriptor(uint16_t cid, uint8_t typ) "cid %"PRIu16" type 0x%"PRIx8"" +nvme_dev_err_invalid_sgl_excess_length(uint16_t cid) "cid %"PRIu16"" nvme_dev_err_invalid_dma(void) "PRP/SGL is too small for transfer size" nvme_dev_err_invalid_prplist_ent(uint64_t prplist) "PRP list entry is null or not page aligned: 0x%"PRIx64"" nvme_dev_err_invalid_prp2_align(uint64_t prp2) "PRP2 is not page aligned: 0x%"PRIx64"" diff --git a/include/block/nvme.h b/include/block/nvme.h index a873776d98b8..f3d41daae105 100644 --- a/include/block/nvme.h +++ b/include/block/nvme.h @@ -205,15 +205,53 @@ enum NvmeCmbszMask { #define NVME_CMBSZ_GETSIZE(cmbsz) \ (NVME_CMBSZ_SZ(cmbsz) * (1 << (12 + 4 * NVME_CMBSZ_SZU(cmbsz)))) +enum NvmeSglDescriptorType { + SGL_DESCR_TYPE_DATA_BLOCK = 0x0, + SGL_DESCR_TYPE_BIT_BUCKET = 0x1, + SGL_DESCR_TYPE_SEGMENT = 0x2, + SGL_DESCR_TYPE_LAST_SEGMENT = 0x3, + SGL_DESCR_TYPE_KEYED_DATA_BLOCK = 0x4, + + SGL_DESCR_TYPE_VENDOR_SPECIFIC = 0xf, +}; + +enum NvmeSglDescriptorSubtype { + SGL_DESCR_SUBTYPE_ADDRESS = 0x0, + SGL_DESCR_SUBTYPE_OFFSET = 0x1, +}; + +typedef struct NvmeSglDescriptor { + uint64_t addr; + uint32_t len; + uint8_t rsvd[3]; + uint8_t type; +} NvmeSglDescriptor; + +#define NVME_SGL_TYPE(type) (type >> 4) + +typedef union NvmeCmdDptr { + struct { + uint64_t prp1; + uint64_t prp2; + } prp; + + NvmeSglDescriptor sgl; +} NvmeCmdDptr; + +enum NvmePsdt { + PSDT_PRP = 0x0, + PSDT_SGL_MPTR_CONTIGUOUS = 0x1, + PSDT_SGL_MPTR_SGL = 0x2, +}; + typedef struct NvmeCmd { uint8_t opcode; - uint8_t fuse; + uint8_t flags; uint16_t cid; uint32_t nsid; uint64_t res1; uint64_t mptr; - uint64_t prp1; - uint64_t prp2; + NvmeCmdDptr dptr; uint32_t cdw10; uint32_t cdw11; uint32_t cdw12; @@ -222,6 +260,9 @@ typedef struct NvmeCmd { uint32_t cdw15; } NvmeCmd; +#define NVME_CMD_FLAGS_FUSE(flags) (flags & 0x3) +#define NVME_CMD_FLAGS_PSDT(flags) ((flags >> 6) & 0x3) + enum NvmeAdminCommands { NVME_ADM_CMD_DELETE_SQ = 0x00, NVME_ADM_CMD_CREATE_SQ = 0x01, @@ -427,6 +468,11 @@ enum NvmeStatusCodes { NVME_CMD_ABORT_MISSING_FUSE = 0x000a, NVME_INVALID_NSID = 0x000b, NVME_CMD_SEQ_ERROR = 0x000c, + NVME_INVALID_SGL_SEG_DESCRIPTOR = 0x000d, + NVME_INVALID_NUM_SGL_DESCRIPTORS = 0x000e, + NVME_DATA_SGL_LENGTH_INVALID = 0x000f, + NVME_METADATA_SGL_LENGTH_INVALID = 0x0010, + NVME_SGL_DESCRIPTOR_TYPE_INVALID = 0x0011, NVME_INVALID_USE_OF_CMB = 0x0012, NVME_LBA_RANGE = 0x0080, NVME_CAP_EXCEEDED = 0x0081, @@ -623,6 +669,16 @@ enum NvmeIdCtrlOncs { #define NVME_CTRL_CQES_MIN(cqes) ((cqes) & 0xf) #define NVME_CTRL_CQES_MAX(cqes) (((cqes) >> 4) & 0xf) +#define NVME_CTRL_SGLS_SUPPORTED(sgls) ((sgls) & 0x3) +#define NVME_CTRL_SGLS_SUPPORTED_NO_ALIGNMENT(sgls) ((sgls) & (0x1 << 0)) +#define NVME_CTRL_SGLS_SUPPORTED_DWORD_ALIGNMENT(sgls) ((sgls) & (0x1 << 1)) +#define NVME_CTRL_SGLS_KEYED(sgls) ((sgls) & (0x1 << 2)) +#define NVME_CTRL_SGLS_BITBUCKET(sgls) ((sgls) & (0x1 << 16)) +#define NVME_CTRL_SGLS_MPTR_CONTIGUOUS(sgls) ((sgls) & (0x1 << 17)) +#define NVME_CTRL_SGLS_EXCESS_LENGTH(sgls) ((sgls) & (0x1 << 18)) +#define NVME_CTRL_SGLS_MPTR_SGL(sgls) ((sgls) & (0x1 << 19)) +#define NVME_CTRL_SGLS_ADDR_OFFSET(sgls) ((sgls) & (0x1 << 20)) + typedef struct NvmeFeatureVal { uint32_t arbitration; uint32_t power_mgmt;