@@ -16,6 +16,7 @@ riscv_ss.add(files(
'gdbstub.c',
'op_helper.c',
'vector_helper.c',
+ 'vector_internals.c',
'bitmanip_helper.c',
'translate.c',
'm128_helper.c',
@@ -26,6 +26,7 @@
#include "fpu/softfloat.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
+#include "vector_internals.h"
#include <math.h>
target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
@@ -72,68 +73,6 @@ target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
return vl;
}
-/*
- * Note that vector data is stored in host-endian 64-bit chunks,
- * so addressing units smaller than that needs a host-endian fixup.
- */
-#if HOST_BIG_ENDIAN
-#define H1(x) ((x) ^ 7)
-#define H1_2(x) ((x) ^ 6)
-#define H1_4(x) ((x) ^ 4)
-#define H2(x) ((x) ^ 3)
-#define H4(x) ((x) ^ 1)
-#define H8(x) ((x))
-#else
-#define H1(x) (x)
-#define H1_2(x) (x)
-#define H1_4(x) (x)
-#define H2(x) (x)
-#define H4(x) (x)
-#define H8(x) (x)
-#endif
-
-static inline uint32_t vext_nf(uint32_t desc)
-{
- return FIELD_EX32(simd_data(desc), VDATA, NF);
-}
-
-static inline uint32_t vext_vm(uint32_t desc)
-{
- return FIELD_EX32(simd_data(desc), VDATA, VM);
-}
-
-/*
- * Encode LMUL to lmul as following:
- * LMUL vlmul lmul
- * 1 000 0
- * 2 001 1
- * 4 010 2
- * 8 011 3
- * - 100 -
- * 1/8 101 -3
- * 1/4 110 -2
- * 1/2 111 -1
- */
-static inline int32_t vext_lmul(uint32_t desc)
-{
- return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
-}
-
-static inline uint32_t vext_vta(uint32_t desc)
-{
- return FIELD_EX32(simd_data(desc), VDATA, VTA);
-}
-
-static inline uint32_t vext_vma(uint32_t desc)
-{
- return FIELD_EX32(simd_data(desc), VDATA, VMA);
-}
-
-static inline uint32_t vext_vta_all_1s(uint32_t desc)
-{
- return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
-}
-
/*
* Get the maximum number of elements can be operated.
*
@@ -152,21 +91,6 @@ static inline uint32_t vext_max_elems(uint32_t desc, uint32_t log2_esz)
return scale < 0 ? vlenb >> -scale : vlenb << scale;
}
-/*
- * Get number of total elements, including prestart, body and tail elements.
- * Note that when LMUL < 1, the tail includes the elements past VLMAX that
- * are held in the same vector register.
- */
-static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
- uint32_t esz)
-{
- uint32_t vlenb = simd_maxsz(desc);
- uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
- int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
- ctzl(esz) - ctzl(sew) + vext_lmul(desc);
- return (vlenb << emul) / esz;
-}
-
static inline target_ulong adjust_addr(CPURISCVState *env, target_ulong addr)
{
return (addr & ~env->cur_pmmask) | env->cur_pmbase;
@@ -199,20 +123,6 @@ static void probe_pages(CPURISCVState *env, target_ulong addr,
}
}
-/* set agnostic elements to 1s */
-static void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
- uint32_t tot)
-{
- if (is_agnostic == 0) {
- /* policy undisturbed */
- return;
- }
- if (tot - cnt == 0) {
- return;
- }
- memset(base + cnt, -1, tot - cnt);
-}
-
static inline void vext_set_elem_mask(void *v0, int index,
uint8_t value)
{
@@ -222,18 +132,6 @@ static inline void vext_set_elem_mask(void *v0, int index,
((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
}
-/*
- * Earlier designs (pre-0.9) had a varying number of bits
- * per mask value (MLEN). In the 0.9 design, MLEN=1.
- * (Section 4.5)
- */
-static inline int vext_elem_mask(void *v0, int index)
-{
- int idx = index / 64;
- int pos = index % 64;
- return (((uint64_t *)v0)[idx] >> pos) & 1;
-}
-
/* elements operations for load and store */
typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
uint32_t idx, void *vd, uintptr_t retaddr);
@@ -728,18 +626,11 @@ GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
* Vector Integer Arithmetic Instructions
*/
-/* expand macro args before macro */
-#define RVVCALL(macro, ...) macro(__VA_ARGS__)
-
/* (TD, T1, T2, TX1, TX2) */
#define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
#define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
#define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
#define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
-#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
-#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
-#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
-#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
#define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
#define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
#define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
@@ -763,16 +654,6 @@ GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
#define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
#define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
-/* operation of two vector elements */
-typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
-
-#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
-static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
-{ \
- TX1 s1 = *((T1 *)vs1 + HS1(i)); \
- TX2 s2 = *((T2 *)vs2 + HS2(i)); \
- *((TD *)vd + HD(i)) = OP(s2, s1); \
-}
#define DO_SUB(N, M) (N - M)
#define DO_RSUB(N, M) (M - N)
@@ -785,40 +666,6 @@ RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
-static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
- CPURISCVState *env, uint32_t desc,
- opivv2_fn *fn, uint32_t esz)
-{
- uint32_t vm = vext_vm(desc);
- uint32_t vl = env->vl;
- uint32_t total_elems = vext_get_total_elems(env, desc, esz);
- uint32_t vta = vext_vta(desc);
- uint32_t vma = vext_vma(desc);
- uint32_t i;
-
- for (i = env->vstart; i < vl; i++) {
- if (!vm && !vext_elem_mask(v0, i)) {
- /* set masked-off elements to 1s */
- vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
- continue;
- }
- fn(vd, vs1, vs2, i);
- }
- env->vstart = 0;
- /* set tail elements to 1s */
- vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
-}
-
-/* generate the helpers for OPIVV */
-#define GEN_VEXT_VV(NAME, ESZ) \
-void HELPER(NAME)(void *vd, void *v0, void *vs1, \
- void *vs2, CPURISCVState *env, \
- uint32_t desc) \
-{ \
- do_vext_vv(vd, v0, vs1, vs2, env, desc, \
- do_##NAME, ESZ); \
-}
-
GEN_VEXT_VV(vadd_vv_b, 1)
GEN_VEXT_VV(vadd_vv_h, 2)
GEN_VEXT_VV(vadd_vv_w, 4)
@@ -828,18 +675,6 @@ GEN_VEXT_VV(vsub_vv_h, 2)
GEN_VEXT_VV(vsub_vv_w, 4)
GEN_VEXT_VV(vsub_vv_d, 8)
-typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
-
-/*
- * (T1)s1 gives the real operator type.
- * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
- */
-#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
-static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
-{ \
- TX2 s2 = *((T2 *)vs2 + HS2(i)); \
- *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
-}
RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
@@ -854,40 +689,6 @@ RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
-static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
- CPURISCVState *env, uint32_t desc,
- opivx2_fn fn, uint32_t esz)
-{
- uint32_t vm = vext_vm(desc);
- uint32_t vl = env->vl;
- uint32_t total_elems = vext_get_total_elems(env, desc, esz);
- uint32_t vta = vext_vta(desc);
- uint32_t vma = vext_vma(desc);
- uint32_t i;
-
- for (i = env->vstart; i < vl; i++) {
- if (!vm && !vext_elem_mask(v0, i)) {
- /* set masked-off elements to 1s */
- vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
- continue;
- }
- fn(vd, s1, vs2, i);
- }
- env->vstart = 0;
- /* set tail elements to 1s */
- vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
-}
-
-/* generate the helpers for OPIVX */
-#define GEN_VEXT_VX(NAME, ESZ) \
-void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
- void *vs2, CPURISCVState *env, \
- uint32_t desc) \
-{ \
- do_vext_vx(vd, v0, s1, vs2, env, desc, \
- do_##NAME, ESZ); \
-}
-
GEN_VEXT_VX(vadd_vx_b, 1)
GEN_VEXT_VX(vadd_vx_h, 2)
GEN_VEXT_VX(vadd_vx_w, 4)
new file mode 100644
@@ -0,0 +1,81 @@
+/*
+ * RISC-V Vector Extension Internals
+ *
+ * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2 or later, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "vector_internals.h"
+
+/* set agnostic elements to 1s */
+void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
+ uint32_t tot)
+{
+ if (is_agnostic == 0) {
+ /* policy undisturbed */
+ return;
+ }
+ if (tot - cnt == 0) {
+ return ;
+ }
+ memset(base + cnt, -1, tot - cnt);
+}
+
+void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
+ CPURISCVState *env, uint32_t desc,
+ opivv2_fn *fn, uint32_t esz)
+{
+ uint32_t vm = vext_vm(desc);
+ uint32_t vl = env->vl;
+ uint32_t total_elems = vext_get_total_elems(env, desc, esz);
+ uint32_t vta = vext_vta(desc);
+ uint32_t vma = vext_vma(desc);
+ uint32_t i;
+
+ for (i = env->vstart; i < vl; i++) {
+ if (!vm && !vext_elem_mask(v0, i)) {
+ /* set masked-off elements to 1s */
+ vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
+ continue;
+ }
+ fn(vd, vs1, vs2, i);
+ }
+ env->vstart = 0;
+ /* set tail elements to 1s */
+ vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
+}
+
+void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
+ CPURISCVState *env, uint32_t desc,
+ opivx2_fn fn, uint32_t esz)
+{
+ uint32_t vm = vext_vm(desc);
+ uint32_t vl = env->vl;
+ uint32_t total_elems = vext_get_total_elems(env, desc, esz);
+ uint32_t vta = vext_vta(desc);
+ uint32_t vma = vext_vma(desc);
+ uint32_t i;
+
+ for (i = env->vstart; i < vl; i++) {
+ if (!vm && !vext_elem_mask(v0, i)) {
+ /* set masked-off elements to 1s */
+ vext_set_elems_1s(vd, vma, i * esz, (i + 1) * esz);
+ continue;
+ }
+ fn(vd, s1, vs2, i);
+ }
+ env->vstart = 0;
+ /* set tail elements to 1s */
+ vext_set_elems_1s(vd, vta, vl * esz, total_elems * esz);
+}
new file mode 100644
@@ -0,0 +1,182 @@
+/*
+ * RISC-V Vector Extension Internals
+ *
+ * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2 or later, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef TARGET_RISCV_VECTOR_INTERNALS_H
+#define TARGET_RISCV_VECTOR_INTERNALS_H
+
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "cpu.h"
+#include "tcg/tcg-gvec-desc.h"
+#include "internals.h"
+
+static inline uint32_t vext_nf(uint32_t desc)
+{
+ return FIELD_EX32(simd_data(desc), VDATA, NF);
+}
+
+/*
+ * Note that vector data is stored in host-endian 64-bit chunks,
+ * so addressing units smaller than that needs a host-endian fixup.
+ */
+#if HOST_BIG_ENDIAN
+#define H1(x) ((x) ^ 7)
+#define H1_2(x) ((x) ^ 6)
+#define H1_4(x) ((x) ^ 4)
+#define H2(x) ((x) ^ 3)
+#define H4(x) ((x) ^ 1)
+#define H8(x) ((x))
+#else
+#define H1(x) (x)
+#define H1_2(x) (x)
+#define H1_4(x) (x)
+#define H2(x) (x)
+#define H4(x) (x)
+#define H8(x) (x)
+#endif
+
+/*
+ * Encode LMUL to lmul as following:
+ * LMUL vlmul lmul
+ * 1 000 0
+ * 2 001 1
+ * 4 010 2
+ * 8 011 3
+ * - 100 -
+ * 1/8 101 -3
+ * 1/4 110 -2
+ * 1/2 111 -1
+ */
+static inline int32_t vext_lmul(uint32_t desc)
+{
+ return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
+}
+
+static inline uint32_t vext_vm(uint32_t desc)
+{
+ return FIELD_EX32(simd_data(desc), VDATA, VM);
+}
+
+static inline uint32_t vext_vma(uint32_t desc)
+{
+ return FIELD_EX32(simd_data(desc), VDATA, VMA);
+}
+
+static inline uint32_t vext_vta(uint32_t desc)
+{
+ return FIELD_EX32(simd_data(desc), VDATA, VTA);
+}
+
+static inline uint32_t vext_vta_all_1s(uint32_t desc)
+{
+ return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
+}
+
+/*
+ * Earlier designs (pre-0.9) had a varying number of bits
+ * per mask value (MLEN). In the 0.9 design, MLEN=1.
+ * (Section 4.5)
+ */
+static inline int vext_elem_mask(void *v0, int index)
+{
+ int idx = index / 64;
+ int pos = index % 64;
+ return (((uint64_t *)v0)[idx] >> pos) & 1;
+}
+
+/*
+ * Get number of total elements, including prestart, body and tail elements.
+ * Note that when LMUL < 1, the tail includes the elements past VLMAX that
+ * are held in the same vector register.
+ */
+static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
+ uint32_t esz)
+{
+ uint32_t vlenb = simd_maxsz(desc);
+ uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
+ int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
+ ctzl(esz) - ctzl(sew) + vext_lmul(desc);
+ return (vlenb << emul) / esz;
+}
+
+/* set agnostic elements to 1s */
+void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
+ uint32_t tot);
+
+/* expand macro args before macro */
+#define RVVCALL(macro, ...) macro(__VA_ARGS__)
+
+/* (TD, T1, T2, TX1, TX2) */
+#define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
+#define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
+#define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
+#define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
+
+/* operation of two vector elements */
+typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
+
+#define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
+static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
+{ \
+ TX1 s1 = *((T1 *)vs1 + HS1(i)); \
+ TX2 s2 = *((T2 *)vs2 + HS2(i)); \
+ *((TD *)vd + HD(i)) = OP(s2, s1); \
+}
+
+void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
+ CPURISCVState *env, uint32_t desc,
+ opivv2_fn *fn, uint32_t esz);
+
+/* generate the helpers for OPIVV */
+#define GEN_VEXT_VV(NAME, ESZ) \
+void HELPER(NAME)(void *vd, void *v0, void *vs1, \
+ void *vs2, CPURISCVState *env, \
+ uint32_t desc) \
+{ \
+ do_vext_vv(vd, v0, vs1, vs2, env, desc, \
+ do_##NAME, ESZ); \
+}
+
+typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
+
+/*
+ * (T1)s1 gives the real operator type.
+ * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
+ */
+#define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
+static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
+{ \
+ TX2 s2 = *((T2 *)vs2 + HS2(i)); \
+ *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
+}
+
+void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
+ CPURISCVState *env, uint32_t desc,
+ opivx2_fn fn, uint32_t esz);
+
+/* generate the helpers for OPIVX */
+#define GEN_VEXT_VX(NAME, ESZ) \
+void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
+ void *vs2, CPURISCVState *env, \
+ uint32_t desc) \
+{ \
+ do_vext_vx(vd, v0, s1, vs2, env, desc, \
+ do_##NAME, ESZ); \
+}
+
+#endif /* TARGET_RISCV_VECTOR_INTERNALS_H */