@@ -2071,41 +2071,7 @@ call.
Because RCU avoids interrupting idle CPUs, it is illegal to execute an
RCU read-side critical section on an idle CPU. (Kernels built with
-``CONFIG_PROVE_RCU=y`` will splat if you try it.) The RCU_NONIDLE()
-macro and ``_rcuidle`` event tracing is provided to work around this
-restriction. In addition, rcu_is_watching() may be used to test
-whether or not it is currently legal to run RCU read-side critical
-sections on this CPU. I learned of the need for diagnostics on the one
-hand and RCU_NONIDLE() on the other while inspecting idle-loop code.
-Steven Rostedt supplied ``_rcuidle`` event tracing, which is used quite
-heavily in the idle loop. However, there are some restrictions on the
-code placed within RCU_NONIDLE():
-
-#. Blocking is prohibited. In practice, this is not a serious
- restriction given that idle tasks are prohibited from blocking to
- begin with.
-#. Although nesting RCU_NONIDLE() is permitted, they cannot nest
- indefinitely deeply. However, given that they can be nested on the
- order of a million deep, even on 32-bit systems, this should not be a
- serious restriction. This nesting limit would probably be reached
- long after the compiler OOMed or the stack overflowed.
-#. Any code path that enters RCU_NONIDLE() must sequence out of that
- same RCU_NONIDLE(). For example, the following is grossly
- illegal:
-
- ::
-
- 1 RCU_NONIDLE({
- 2 do_something();
- 3 goto bad_idea; /* BUG!!! */
- 4 do_something_else();});
- 5 bad_idea:
-
-
- It is just as illegal to transfer control into the middle of
- RCU_NONIDLE()'s argument. Yes, in theory, you could transfer in
- as long as you also transferred out, but in practice you could also
- expect to get sharply worded review comments.
+``CONFIG_PROVE_RCU=y`` will splat if you try it.)
It is similarly socially unacceptable to interrupt an ``nohz_full`` CPU
running in userspace. RCU must therefore track ``nohz_full`` userspace
@@ -1117,7 +1117,6 @@ All: lockdep-checked RCU utility APIs::
RCU_LOCKDEP_WARN
rcu_sleep_check
- RCU_NONIDLE
All: Unchecked RCU-protected pointer access::
@@ -156,31 +156,6 @@ static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
static inline void rcu_nocb_flush_deferred_wakeup(void) { }
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
-/**
- * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
- * @a: Code that RCU needs to pay attention to.
- *
- * RCU read-side critical sections are forbidden in the inner idle loop,
- * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU
- * will happily ignore any such read-side critical sections. However,
- * things like powertop need tracepoints in the inner idle loop.
- *
- * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
- * will tell RCU that it needs to pay attention, invoke its argument
- * (in this example, calling the do_something_with_RCU() function),
- * and then tell RCU to go back to ignoring this CPU. It is permissible
- * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
- * on the order of a million or so, even on 32-bit systems). It is
- * not legal to block within RCU_NONIDLE(), nor is it permissible to
- * transfer control either into or out of RCU_NONIDLE()'s statement.
- */
-#define RCU_NONIDLE(a) \
- do { \
- ct_irq_enter_irqson(); \
- do { a; } while (0); \
- ct_irq_exit_irqson(); \
- } while (0)
-
/*
* Note a quasi-voluntary context switch for RCU-tasks's benefit.
* This is a macro rather than an inline function to avoid #include hell.